Movatterモバイル変換


[0]ホーム

URL:


login
A299285
Coordination sequence for "tea" 3D uniform tiling.
51
1, 10, 33, 73, 128, 199, 285, 388, 506, 640, 789, 955, 1136, 1333, 1545, 1774, 2018, 2278, 2553, 2845, 3152, 3475, 3813, 4168, 4538, 4924, 5325, 5743, 6176, 6625, 7089, 7570, 8066, 8578, 9105, 9649, 10208, 10783, 11373, 11980, 12602, 13240, 13893
OFFSET
0,2
COMMENTS
First 20 terms computed byDavide M. Proserpio using ToposPro.
LINKS
B. Grünbaum,Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #4.
Reticular Chemistry Structure Resource (RCSR),The tea tiling (or net)
FORMULA
FromColin Barker, Feb 11 2018: (Start)
G.f.: (1 + 8*x + 14*x^2 + 17*x^3 + 14*x^4 + 8*x^5 + x^6) / ((1 - x)^3*(1 + x)*(1 + x^2)).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n>6. (End)
[I suspect Barker's formulas only conjectures. -N. J. A. Sloane, Jun 12 2024]
If the above formulas are true, then a(n) = (31 - 3*(-1)^n + 126*n^2 + 4*A056594(n))/16 for n > 0. -Stefano Spezia, Jun 08 2024
MATHEMATICA
LinearRecurrence[{2, -1, 0, 1, -2, 1}, {1, 10, 33, 73, 128, 199, 285}, 50] (*Harvey P. Dale, May 09 2022 *)
PROG
(PARI) a(n)=([0, 1, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0; 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 1; 1, -2, 1, 0, -1, 2]^n*[1; 10; 33; 73; 128; 199])[1, 1] \\Charles R Greathouse IV, Oct 18 2022
CROSSREFS
SeeA299286 for partial sums.
The 28 uniform 3D tilings: cab:A299266,A299267; crs:A299268,A299269; fcu:A005901,A005902; fee:A299259,A299265; flu-e:A299272,A299273; fst:A299258,A299264; hal:A299274,A299275; hcp:A007899,A007202; hex:A005897,A005898; kag:A299256,A299262; lta:A008137,A299276; pcu:A005899,A001845; pcu-i:A299277,A299278; reo:A299279,A299280; reo-e:A299281,A299282; rho:A008137,A299276; sod:A005893,A005894; sve:A299255,A299261; svh:A299283,A299284; svj:A299254,A299260; svk:A010001,A063489; tca:A299285,A299286; tcd:A299287,A299288; tfs:A005899,A001845; tsi:A299289,A299290; ttw:A299257,A299263; ubt:A299291,A299292; bnn:A007899,A007202. See the Proserpio link inA299266 for overview.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 10 2018
STATUS
approved


[8]ページ先頭

©2009-2025 Movatter.jp