Movatterモバイル変換


[0]ホーム

URL:


login
A299273
Partial sums ofA299272.
51
1, 7, 25, 62, 125, 224, 366, 555, 804, 1121, 1505, 1973, 2535, 3183, 3939, 4816, 5797, 6910, 8172, 9555, 11094, 12811, 14665, 16699, 18941, 21335, 23933, 26770, 29773, 33004, 36506, 40187, 44120, 48357, 52785, 57489, 62531, 67775, 73319, 79236, 85365, 91818, 98680, 105763, 113194, 121071, 129177
OFFSET
0,2
FORMULA
Conjectures fromColin Barker, Feb 11 2018: (Start)
G.f.: (1 + x)^3*(1 + x^2)*(1 + 3*x + 5*x^2 + 3*x^3 + x^4) / ((1 - x)^4*(1 + x + x^2)^3).
a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) - 3*a(n-6) + 3*a(n-7) + a(n-9) - a(n-10) for n>9.
(End)
These conjectures are correct. -N. J. A. Sloane, Feb 12 2018
a(n) = (12*(2*n + 1)*(26*n*(n + 1) + 45) + (9*n^2 + 39*n - 54)*A099837(n+3)/2 + 3*(3*(n - 9)*n - 38)*A049347(n+2)/2)/486. -Stefano Spezia, Jun 06 2024
MATHEMATICA
CoefficientList[Series[(1+x)^3*(1+x^2)*(1+3*x+5*x^2+3*x^3+x^4)/((1-x)^4*(1+x+x^2)^3), {x, 0, 50}], x] (*G. C. Greubel, Feb 20 2018 *)
PROG
(PARI) x='x+O('x^30); Vec((1+x)^3*(1+x^2)*(1+3*x+5*x^2+3*x^3+x^4)/((1-x)^4*(1+x+x^2)^3)) \\G. C. Greubel, Feb 20 2018
(Magma) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!((1+x)^3*(1+x^2)*(1+3*x+5*x^2+3*x^3+x^4)/((1-x)^4*(1+x+x^2)^3))); //G. C. Greubel, Feb 20 2018
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 10 2018
STATUS
approved


[8]ページ先頭

©2009-2025 Movatter.jp