Movatterモバイル変換


[0]ホーム

URL:


login
A299257
Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3.12.12 2D tiling (cf.A250122).
51
1, 5, 12, 22, 36, 56, 82, 111, 144, 183, 226, 272, 324, 382, 442, 505, 576, 653, 730, 810, 900, 996, 1090, 1187, 1296, 1411, 1522, 1636, 1764, 1898, 2026, 2157, 2304, 2457, 2602, 2750, 2916, 3088, 3250, 3415, 3600, 3791, 3970, 4152, 4356, 4566, 4762, 4961, 5184, 5413, 5626, 5842, 6084, 6332
OFFSET
0,2
REFERENCES
B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #19.
LINKS
Reticular Chemistry Structure Resource (RCSR),The ttw tiling (or net)
FORMULA
G.f.: (2*x^8 - 4*x^7 + 3*x^6 - 5*x^5 + x^4 - 3*x^3 - x^2 - x - 1)*(x + 1) / ((x - 1)^3*(x^2 + 1)^2).
FromColin Barker, Feb 09 2018: (Start)
a(n) = (4 - (2+8*i)*(-i)^n - (2-8*i)*i^n + i*((-i)^n-i^n)*n + 18*n^2) / 8 for n>2, where i=sqrt(-1).
a(n) = 3*a(n-1) - 5*a(n-2) + 7*a(n-3) - 7*a(n-4) + 5*a(n-5) - 3*a(n-6) + a(n-7) for n>9. (End)
a(n) = 1/2 + 9*n^2/4 + (-1)^floor(n/2)*(A027656(n-1)/2 -A010699(n)/4). -R. J. Mathar, Feb 12 2021
MATHEMATICA
LinearRecurrence[{3, -5, 7, -7, 5, -3, 1}, {1, 5, 12, 22, 36, 56, 82, 111, 144, 183}, 60] (*Paolo Xausa, Jun 20 2024 *)
PROG
(PARI) Vec((1 + x)*(1 + x + x^2 + 3*x^3 - x^4 + 5*x^5 - 3*x^6 + 4*x^7 - 2*x^8) / ((1 - x)^3*(1 + x^2)^2) + O(x^60)) \\Colin Barker, Feb 09 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 07 2018
STATUS
approved


[8]ページ先頭

©2009-2025 Movatter.jp