Movatterモバイル変換


[0]ホーム

URL:


login
A220336
A modified Engel expansion for 4*sqrt(2) - 5.
9
2, 4, 6, 2, 18, 34, 2, 578, 1154, 2, 665858, 1331714, 2, 886731088898, 1773462177794, 2, 1572584048032918633353218, 3145168096065837266706434, 2, 4946041176255201878775086487573351061418968498178, 9892082352510403757550172975146702122837936996354
OFFSET
1,1
COMMENTS
For a brief description of the modified Engel expansion of a real number seeA220335.
Let p >= 2 be an integer and set Q(p) = (p - 1)*sqrt(p^2 - 1) - (p^2 - p - 1), so Q(3) = 4*sqrt(2) - 5. Iterating the identity Q(p) = 1/2 + 1/(2*(p+1)) + 1/(2*(p+1)*(2*p)) + 1/(2*(p+1)*(2*p))*Q(2*p^2-1) leads to a representation for Q(p) as an infinite series of unit fractions. The sequence of denominators of these unit fractions can be used to find the modified Engel expansion of Q(p). For further details see the Bala link. The present sequence is the case p = 3. For other cases seeA220335 (p = 2),A220337 (p = 4) andA220338 (p = 5).
FORMULA
Define the map h(x) := floor(1/x)*(x*ceiling(1/x) - 1). Let x = 4*sqrt(2) - 5. Then a(1) = ceiling(1/x) and for n >= 2, a(n) = floor(1/h^(n-2)(x))*ceiling(1/h^(n-1)(x)), where h^(n)(x) denotes the n-th iterate of the map h(x), with the convention h^(0)(x) = x.
a(3*n+2) = 1/2*{2 + (1+sqrt(2))^(2^(n+1)) + (1-sqrt(2))^(2^(n+1))},
a(3*n+3) = {(1 + sqrt(2))^(2^(n+1)) + (1 - sqrt(2))^(2^(n+1))}, both
for n >= 0.
For n >= 0, a(3*n+1) = 2. For n >= 1, a(3*n+2) = 2*A001601(n)^2 and a(3*n+3) = 4*A001601(n)^2 - 2.
Recurrence equations:
For n >= 1, a(3*n+2) = 2*{a(3*n-1)^2 - 2*a(3*n-1) + 1} and
a(3*n+3) = 2*a(3*n+2) - 2.
Put P(n) = Product_{k=1..n} a(k). Then we have the infinite Egyptian fraction representation 4*sqrt(2) - 5 = Sum_{n>=1} 1/P(n) = 1/2 + 1/(2*4) + 1/(2*4*6) + 1/(2*4*6*2) + 1/(2*4*6*2*18) + ....
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Dec 12 2012
STATUS
approved


[8]ページ先頭

©2009-2025 Movatter.jp