Movatterモバイル変換


[0]ホーム

URL:


login
A144314
a(n) = 3*n*(6*n + 1).
6
0, 21, 78, 171, 300, 465, 666, 903, 1176, 1485, 1830, 2211, 2628, 3081, 3570, 4095, 4656, 5253, 5886, 6555, 7260, 8001, 8778, 9591, 10440, 11325, 12246, 13203, 14196, 15225, 16290, 17391, 18528, 19701, 20910, 22155, 23436, 24753, 26106, 27495
OFFSET
0,2
FORMULA
a(n) =A000217(6*n) =A014105(3*n) =A081266(2*n).
G.f.: 3*x*(7+5*x)/(1-x)^3. -Vincenzo Librandi, Dec 18 2014
FromWesley Ivan Hurt, Dec 16 2015: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
a(n) = 3 *A049453(n). (End)
E.g.f.: 3*exp(x)*x*(7 + 6*x). -Stefano Spezia, Jun 29 2021
FromAmiram Eldar, May 11 2025: (Start)
Sum_{n>=1} 1/a(n) = 2 - Pi/(2*sqrt(3)) - 2*log(2)/3 - log(3)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/3 + log(2)/3 + log(2+sqrt(3))/sqrt(3) - 2. (End)
MAPLE
A144314:=n->3*n*(6*n+1): seq(A144314(n), n=0..70); #Wesley Ivan Hurt, Dec 16 2015
MATHEMATICA
Table[3n(6n+1), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 21, 78}, 40] (*Harvey P. Dale, Dec 17 2014 *)
CoefficientList[Series[x (21 + 15 x) / (1 - x)^3, {x, 0, 50}], x] (*Vincenzo Librandi, Dec 18 2014 *)
PROG
(Magma) [18*n^2+3*n: n in [0..50]]; //Vincenzo Librandi, Dec 18 2014
(PARI) a(n)=3*n*(6*n+1) \\Charles R Greathouse IV, Oct 07 2015
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Sep 17 2008
STATUS
approved


[8]ページ先頭

©2009-2026 Movatter.jp