OFFSET
0,2
LINKS
Harvey P. Dale,Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: 3*x*(7+5*x)/(1-x)^3. -Vincenzo Librandi, Dec 18 2014
FromWesley Ivan Hurt, Dec 16 2015: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
a(n) = 3 *A049453(n). (End)
E.g.f.: 3*exp(x)*x*(7 + 6*x). -Stefano Spezia, Jun 29 2021
FromAmiram Eldar, May 11 2025: (Start)
Sum_{n>=1} 1/a(n) = 2 - Pi/(2*sqrt(3)) - 2*log(2)/3 - log(3)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/3 + log(2)/3 + log(2+sqrt(3))/sqrt(3) - 2. (End)
MAPLE
MATHEMATICA
Table[3n(6n+1), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 21, 78}, 40] (*Harvey P. Dale, Dec 17 2014 *)
CoefficientList[Series[x (21 + 15 x) / (1 - x)^3, {x, 0, 50}], x] (*Vincenzo Librandi, Dec 18 2014 *)
PROG
(Magma) [18*n^2+3*n: n in [0..50]]; //Vincenzo Librandi, Dec 18 2014
(PARI) a(n)=3*n*(6*n+1) \\Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Sep 17 2008
STATUS
approved
