Movatterモバイル変換


[0]ホーム

URL:


login
A100185
Structured meta-anti-prism numbers, the n-th number from a structured n-gonal anti-prism number sequence.
9
1, 4, 19, 68, 185, 416, 819, 1464, 2433, 3820, 5731, 8284, 11609, 15848, 21155, 27696, 35649, 45204, 56563, 69940, 85561, 103664, 124499, 148328, 175425, 206076, 240579, 279244, 322393, 370360, 423491, 482144, 546689, 617508, 694995, 779556, 871609, 971584
OFFSET
1,2
FORMULA
a(n) = (1/6)*(3*n^4 - 8*n^3 + 9*n^2 + 2*n).
G.f.: x*(1 - x + 9*x^2 + 3*x^3)/(1-x)^5. -Colin Barker, Jun 08 2012
FromElmo R. Oliveira, Sep 09 2025: (Start)
E.g.f.: exp(x)*x*(3*x^3 + 10*x^2 + 6*x + 6)/6.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5. (End)
EXAMPLE
There are no 1- or 2-gonal anti-prisms, so 1 and (2n) are used as the first and second terms since all the sequences begin as such.
PROG
(Magma) [(1/6)*(3*n^4-8*n^3+9*n^2+2*n): n in [1..40]]; //Vincenzo Librandi, Aug 03 2011
CROSSREFS
Cf.A000447,A005900,A096000,A100157,A100178,A100185 - structured anti-prisms;A006484 for other structured meta numbers; andA100145 for more on structured numbers.
KEYWORD
easy,nonn
AUTHOR
James A. Record (james.record(AT)gmail.com)
STATUS
approved


[8]ページ先頭

©2009-2025 Movatter.jp