Movatterモバイル変換


[0]ホーム

URL:


login
A006330
Number of corners, or planar partitions of n with only one row and one column.
49
1, 1, 3, 6, 12, 21, 38, 63, 106, 170, 272, 422, 653, 986, 1482, 2191, 3218, 4666, 6726, 9592, 13602, 19122, 26733, 37102, 51232, 70292, 95989, 130356, 176246, 237120, 317724, 423840, 563266, 745562, 983384, 1292333, 1692790, 2209886, 2876132
OFFSET
0,3
COMMENTS
The first four terms a(0), a(1), a(2), a(3) agree with sequenceA000219 for unrestricted planar partitions, since the restriction does not rule anything out. For a(4) there is just one planar partition which doesn't satisfy the restriction, four 1's arranged in a square. SoA000219 has fifth term 13 and here we have 12.
a(n) +A001523(n) =A000712(n). -Michael Somos, Jul 22 2003
Number of unimodal compositions of n+1 where the maximal part appears once, see example. [Joerg Arndt, Jun 11 2013]
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see page 77.
LINKS
G. E. Andrews,Euler's "De Partitio Numerorum", Bull. Amer. Math. Soc., 44 (No. 4, 2007), 561-573. See (5.6).
F. C. Auluck,On some new types of partitions associated with generalized Ferrers graphs, Proc. Cambridge Philos. Soc. 47, (1951), 679-686.
Shouvik Datta, M. R. Gaberdiel, W. Li, C. Peng,Twisted sectors from plane partitions, arXiv preprint arXiv:1606.07070 [hep-th], 2016. See Sect. 2.1.
G. Kreweras,Sur les extensions linéaires d'une famille particulière d'ordres partiels, Discrete Math., 27 (1979), 279-295. (Annotated scanned copy)
FORMULA
G.f.: 1+Sum_{k>0} x^k/(Product_{i=1..k} (1-x^i))^2.
G.f.: (Sum_{k>=0} (-1)^k * x^(k(k+1)/2)) / (Product_{k>0} 1 - x^k)^2. -Michael Somos, Jul 28 2003
Convolution product ofA197870 andA000712. -Michael Somos, Feb 22 2015
a(n) ~ exp(2*Pi*sqrt(n/3)) / (8 * 3^(3/4) * n^(5/4)) [Auluck, 1951]. -Vaclav Kotesovec, Jun 22 2015
EXAMPLE
FromJoerg Arndt, Jun 11 2013: (Start)
There are a(4)=12 unimodal compositions of 4+1=5 where the maximal part appears once:
01: [ 1 1 1 2 ]
02: [ 1 1 2 1 ]
03: [ 1 1 3 ]
04: [ 1 2 1 1 ]
05: [ 1 3 1 ]
06: [ 1 4 ]
07: [ 2 1 1 1 ]
08: [ 2 3 ]
09: [ 3 1 1 ]
10: [ 3 2 ]
11: [ 4 1 ]
12: [ 5 ]
(End)
G.f. = 1 + x + 3*x^2 + 6*x^3 + 12*x^4 + 21*x^5 + 38*x^6 + 63*x^7 + 106*x^8 + ...
MATHEMATICA
a[0] = 1; a[n_] := SeriesCoefficient[ Sum[x^k/Product[1 - x^i, {i, 1, k}]^2, {k, 1, n}] + 1, {x, 0, n}]; Array[a, 39, 0] (*Jean-François Alcover, Mar 13 2014 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=1, n, x^k / prod(i=1, k, 1 - x^i, 1 + x*O(x^n))^2, 1), n))};
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(1 + 8*n) - 1)\2, (-1)^k * x^((k + k^2)/2)) / eta(x + x*O(x^n))^2, n))};
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Edited and extended byMoshe Shmuel Newman, Jun 10 2003
STATUS
approved


[8]ページ先頭

©2009-2025 Movatter.jp