Movatterモバイル変換


[0]ホーム

URL:


login
A005449
Second pentagonal numbers: a(n) = n*(3*n + 1)/2.
143
0, 2, 7, 15, 26, 40, 57, 77, 100, 126, 155, 187, 222, 260, 301, 345, 392, 442, 495, 551, 610, 672, 737, 805, 876, 950, 1027, 1107, 1190, 1276, 1365, 1457, 1552, 1650, 1751, 1855, 1962, 2072, 2185, 2301, 2420, 2542, 2667, 2795, 2926, 3060, 3197, 3337, 3480
OFFSET
0,2
COMMENTS
Number of edges in the join of the complete graph and the cycle graph, both of order n, K_n * C_n. -Roberto E. Martinez II, Jan 07 2002
Also number of cards to build an n-tier house of cards. -Martin Wohlgemuth, Aug 11 2002
The modular form Delta(q) = q*Product_{n>=1} (1-q^n)^24 = q*(1 + Sum_{n>=1} (-1)^n*(q^(n*(3*n-1)/2)+q^(n*(3*n+1)/2)))^24 = q*(1 + Sum_{n>=1}A033999(n)*(q^A000326(n)+q^a(n)))^24. -Jonathan Vos Post, Mar 15 2006
Row sums of triangleA134403.
Bisection ofA001318. -Omar E. Pol, Aug 22 2011
Sequence found by reading the line from 0 in the direction 0, 7, ... and the line from 2 in the direction 2, 15, ... in the square spiral whose vertices are the generalized pentagonal numbers,A001318. -Omar E. Pol, Sep 08 2011
A general formula for the n-th second k-gonal number is given by T(n, k) = n*((k-2)*n+k-4)/2, n>=0, k>=5. -Omar E. Pol, Aug 04 2012
Partial sums giveA006002. -Denis Borris, Jan 07 2013
A002260 is the following array A read by antidiagonals:
0, 1, 2, 3, 4, 5, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 2, 3, 4, 5, ...
and a(n) is the hook sum: Sum_{k=0..n} A(n,k) + Sum_{r=0..n-1} A(r,n). -R. J. Mathar, Jun 30 2013
FromKlaus Purath, May 13 2021: (Start)
This sequence andA000326 provide all integers m such that 24*m + 1 is a square. The union of the two sequences isA001318.
If A is a sequence satisfying the recurrence t(n) = 3*t(n-1) - 2*t(n-2) with the initial values either A(0) = 1, A(1) = n + 2 or A(0) = -1, A(1) = n - 1, then a(n) = (A(i)^2 - A(i-1)*A(i+1))/2^i + n^2 for i>0. (End)
a(n+1) is the number of Dyck paths of size (3,3n+2), i.e., the number of NE lattice paths from (0,0) to (3,3n+2) which stay above the line connecting these points. -Harry Richman, Jul 13 2021
Binomial transform of [0, 2, 3, 0, 0, 0, ...], being a(n) = 2*binomial(n,1) + 3*binomial(n,2). a(3) = 15 = [0, 2, 3, 0] dot [1, 3, 3, 1] = [0 + 6 + 9 + 0]. -Gary W. Adamson, Dec 17 2022
a(n) is the sum of longest side length of all nondegenerate integer-sided triangles with shortest side length n and middle side length (n + 1), n > 0. -Torlach Rush, Feb 04 2024
REFERENCES
Henri Cohen, A Course in Computational Algebraic Number Theory, vol. 138 of Graduate Texts in Mathematics, Springer-Verlag, 2000.
Elena Deza and Michel Marie Deza, Figurate numbers, World Scientific Publishing (2012), page 78.
LINKS
A. O. L. Atkin and F. Morain,Elliptic Curves and Primality Proving, Math. Comp., Vol. 61, No. 203 (1993), pp. 29-68.
Charles H. Conley and Valentin Ovsienko,Quiddities of polygon dissections and the Conway-Coxeter frieze equation, arXiv:2107.01234 [math.CO], 2021.
Leonhard Euler,De mirabilibus proprietatibus numerorum pentagonalium, Acta Academiae Scientiarum Imperialis Petropolitanae, Vol. 1780: I, pp. 56-75.
Leonhard Euler,Observatio de summis divisorum, Novi Commentarii academiae scientiarum Petropolitanae, Vol. 5, pp. 59-74.
Leonhard Euler,An observation on the sums of divisors, arXiv:math/0411587 [math.HO], 2004-2009, p. 8.
Leonhard Euler,On the remarkable properties of the pentagonal numbers, arXiv:math/0505373 [math.HO], 2005.
D. Suprijanto and I. W. Suwarno,Observation on Sums of Powers of Integers Divisible by 3k-1, Applied Mathematical Sciences, Vol. 8, No. 45 (2014), pp. 2211-2217.
FORMULA
a(n) =A110449(n, 1) for n>0.
G.f.: x*(2+x)/(1-x)^3. E.g.f.: exp(x)*(2*x + 3*x^2/2). a(n) = n*(3*n + 1)/2. a(-n) =A000326(n). -Michael Somos, Jul 18 2003
a(n) =A001844(n) -A000217(n+1) =A101164(n+2,2) for n>0. -Reinhard Zumkeller, Dec 03 2004
a(n) = Sum_{j=1..n} n+j. -Zerinvary Lajos, Sep 12 2006
a(n) =A126890(n,n). -Reinhard Zumkeller, Dec 30 2006
a(n) = 2*C(3*n,4)/C(3*n,2), n>=1. -Zerinvary Lajos, Jan 02 2007
a(n) =A000217(n) +A000290(n). -Zak Seidov, Apr 06 2008
a(n) = a(n-1) + 3*n - 1 for n>0, a(0)=0. -Vincenzo Librandi, Nov 18 2010
a(n) =A129267(n+5,n). -Philippe Deléham, Dec 21 2011
a(n) = 2*A000217(n) +A000217(n-1). -Philippe Deléham, Mar 25 2013
a(n) =A130518(3*n+1). -Philippe Deléham, Mar 26 2013
a(n) = (12/(n+2)!)*Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*j^(n+2). -Vladimir Kruchinin, Jun 04 2013
a(n) = floor(n/(1-exp(-2/(3*n)))) for n>0. -Richard R. Forberg, Jun 22 2013
a(n) = Sum_{i=1..n} (3*i - 1) for n >= 1. -Wesley Ivan Hurt, Oct 11 2013 [Corrected byRémi Guillaume, Oct 24 2024]
a(n) = (A000292(6*n+k+1)-A000292(k))/(6*n+1) -A000217(3*n+k+1), for any k >= 0. -Manfred Arens, Apr 26 2015
Sum_{n>=1} 1/a(n) = 6 - Pi/sqrt(3) - 3*log(3) = 0.89036376976145307522... . -Vaclav Kotesovec, Apr 27 2016
a(n) =A000217(2*n) -A000217(n). -Bruno Berselli, Sep 21 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/sqrt(3) + 4*log(2) - 6. -Amiram Eldar, Jan 18 2021
FromKlaus Purath, May 13 2021: (Start)
Partial sums ofA016789 for n > 0.
a(n) = 3*n^2 -A000326(n).
a(n) =A000326(n) + n.
a(n) =A002378(n) +A000217(n-1) for n >= 1. [Corrected byRémi Guillaume, Aug 14 2024] (End)
FromKlaus Purath, Jul 14 2021: (Start)
b^2 = 24*a(n) + 1 we get by b^2 = (a(n+1) - a(n-1))^2 = (a(2*n)/n)^2.
a(2*n) = n*(a(n+1) - a(n-1)), n > 0.
a(2*n+1) = n*(a(n+1) - a(n)). (End)
A generalization of Lajos' formula, dated Sep 12 2006, follows. Let SP(k,n) = the n-th second k-gonal number. Then SP(2k+1,n) = Sum_{j=1..n} (k-1)*n+j+k-2. -Charlie Marion, Jul 13 2024
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * binomial(k, 2) * binomial(3*n+k, 2*k). -Peter Bala, Nov 03 2024
For integer m, (6*m + 1)^2*a(n) + a(m) = a((6*m+1)*n + m). -Peter Bala, Jan 09 2025
EXAMPLE
FromOmar E. Pol, Aug 22 2011: (Start)
Illustration of initial terms:
O
O O
O O O O
O O O O O O
O O O O O O O O O
O O O O O O O O O O O
O O O O O O O O O O O O O
O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O
- --- ----- ------- ---------
2 7 15 26 40
(End)
MAPLE
A005449:=n->n*(3*n + 1)/2; seq(A005449(k), k=0..100); #Wesley Ivan Hurt, Oct 11 2013
MATHEMATICA
Table[n (3 n + 1)/2, {n, 0, 100}] (*Zak Seidov, Jan 31 2012 *)
PROG
(PARI) {a(n) = n * (3*n + 1) / 2} /*Michael Somos, Jul 18 2003 */
(Magma) [n*(3*n + 1) / 2: n in [0..40]]; //Vincenzo Librandi, May 02 2011
CROSSREFS
Cf.A016789 (first differences),A006002 (partial sums).
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequencesA000326, this sequence,A045943,A115067,A140090,A140091,A059845,A140672-A140675,A151542.
Cf. numbers of the form n*(n*k-k+4)/2 listed inA226488 (this sequence is the case k=3).
Cf. numbers of the form n*((2*k+1)*n+1)/2 listed inA022289 (this sequence is the case k=1).
KEYWORD
nonn,easy
STATUS
approved


[8]ページ先頭

©2009-2025 Movatter.jp