Movatterモバイル変換


[0]ホーム

URL:


login
A000047
Number of integers <= 2^n of form x^2 - 2y^2.
3
1, 2, 3, 5, 8, 15, 26, 48, 87, 161, 299, 563, 1066, 2030, 3885, 7464, 14384, 27779, 53782, 104359, 202838, 394860, 769777, 1502603, 2936519, 5744932, 11249805, 22048769, 43248623, 84894767, 166758141, 327770275, 644627310, 1268491353, 2497412741
OFFSET
0,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seth A. Troisi,Table of n, a(n) for n = 0..50 (terms 0..35 from Ray Chandler, 36..37 from Pontus von Brömssen)
D. Borwein, J. M. Borwein, P. B. Borwein, R. Girgensohn,Giuga's Conjecture on Primality, Am. Math. Monthly 103 (1) (1996), 40-50.
D. Shanks and L. P. Schmid,Variations on a theorem of Landau. Part I, Math. Comp., 20 (1966), 551-569.
EXAMPLE
There are 5 integers <= 2^3 of form x^2 - 2y^2. The five (x,y) pairs (1,0), (2,1), (2,0), (3,1), (4,2) give respectively: 1, 2, 4, 7, 8. So a(3) = 5. -Bernard Schott, Feb 10 2019
MATHEMATICA
cnt=0; n=0; Table[n++; While[{p, e}=Transpose[FactorInteger[n]]; If[Select[p^e, MemberQ[{3, 5}, Mod[ #, 8]] &] == {}, cnt++ ]; n<2^k, n++ ]; cnt, {k, 0, 20}] (*T. D. Noe, Jan 19 2009 *)
PROG
(PARI)A000047(n)={ local(f, c=0); for(m=1, 2^n, for(i=1, #f=factor(m)~, abs(f[1, i]%8-4)==1 || next; f[2, i]%2 & next(2)); c++); c} \\ See comment inA035251: m=3 or 5 mod 8;M. F. Hasler, Jan 19 2009
KEYWORD
nonn
EXTENSIONS
More terms fromGiovanni Resta andHarry J. Smith, Jan 24 2009
STATUS
approved


[8]ページ先頭

©2009-2026 Movatter.jp