Structured arrays#
Introduction#
Structured arrays are ndarrays whose datatype is a composition of simplerdatatypes organized as a sequence of namedfields. For example,
>>>x=np.array([('Rex',9,81.0),('Fido',3,27.0)],...dtype=[('name','U10'),('age','i4'),('weight','f4')])>>>xarray([('Rex', 9, 81.), ('Fido', 3, 27.)], dtype=[('name', '<U10'), ('age', '<i4'), ('weight', '<f4')])
Herex is a one-dimensional array of length two whose datatype is astructure with three fields: 1. A string of length 10 or less named ‘name’, 2.a 32-bit integer named ‘age’, and 3. a 32-bit float named ‘weight’.
If you indexx at position 1 you get a structure:
>>>x[1]np.void(('Fido', 3, 27.0), dtype=[('name', '<U10'), ('age', '<i4'), ('weight', '<f4')])
You can access and modify individual fields of a structured array by indexingwith the field name:
>>>x['age']array([9, 3], dtype=int32)>>>x['age']=5>>>xarray([('Rex', 5, 81.), ('Fido', 5, 27.)], dtype=[('name', '<U10'), ('age', '<i4'), ('weight', '<f4')])
Structured datatypes are designed to be able to mimic ‘structs’ in the Clanguage, and share a similar memory layout. They are meant for interfacing withC code and for low-level manipulation of structured buffers, for example forinterpreting binary blobs. For these purposes they support specialized featuressuch as subarrays, nested datatypes, and unions, and allow control over thememory layout of the structure.
Users looking to manipulate tabular data, such as stored in csv files, may findother pydata projects more suitable, such as xarray, pandas, or DataArray.These provide a high-level interface for tabular data analysis and are betteroptimized for that use. For instance, the C-struct-like memory layout ofstructured arrays in numpy can lead to poor cache behavior in comparison.
Structured datatypes#
A structured datatype can be thought of as a sequence of bytes of a certainlength (the structure’sitemsize) which is interpreted as a collectionof fields. Each field has a name, a datatype, and a byte offset within thestructure. The datatype of a field may be any numpy datatype including otherstructured datatypes, and it may also be asubarray data type whichbehaves like an ndarray of a specified shape. The offsets of the fields arearbitrary, and fields may even overlap. These offsets are usually determinedautomatically by numpy, but can also be specified.
Structured datatype creation#
Structured datatypes may be created using the functionnumpy.dtype.There are 4 alternative forms of specification which vary in flexibility andconciseness. These are further documented in theData Type Objects reference page, and insummary they are:
A list of tuples, one tuple per field
Each tuple has the form
(fieldname,datatype,shape)where shape isoptional.fieldnameis a string (or tuple if titles are used, seeField Titles below),datatypemay be any objectconvertible to a datatype, andshapeis a tuple of integers specifyingsubarray shape.>>>np.dtype([('x','f4'),('y',np.float32),('z','f4',(2,2))])dtype([('x', '<f4'), ('y', '<f4'), ('z', '<f4', (2, 2))])
If
fieldnameis the empty string'', the field will be given adefault name of the formf#, where#is the integer index of thefield, counting from 0 from the left:>>>np.dtype([('x','f4'),('','i4'),('z','i8')])dtype([('x', '<f4'), ('f1', '<i4'), ('z', '<i8')])
The byte offsets of the fields within the structure and the totalstructure itemsize are determined automatically.
A string of comma-separated dtype specifications
In this shorthand notation any of thestring dtype specifications may be used in a string and separated bycommas. The itemsize and byte offsets of the fields are determinedautomatically, and the field names are given the default names
f0,f1, etc.>>>np.dtype('i8, f4, S3')dtype([('f0', '<i8'), ('f1', '<f4'), ('f2', 'S3')])>>>np.dtype('3int8, float32, (2, 3)float64')dtype([('f0', 'i1', (3,)), ('f1', '<f4'), ('f2', '<f8', (2, 3))])
A dictionary of field parameter arrays
This is the most flexible form of specification since it allows controlover the byte-offsets of the fields and the itemsize of the structure.
The dictionary has two required keys, ‘names’ and ‘formats’, and fouroptional keys, ‘offsets’, ‘itemsize’, ‘aligned’ and ‘titles’. The valuesfor ‘names’ and ‘formats’ should respectively be a list of field names anda list of dtype specifications, of the same length. The optional ‘offsets’value should be a list of integer byte-offsets, one for each field withinthe structure. If ‘offsets’ is not given the offsets are determinedautomatically. The optional ‘itemsize’ value should be an integerdescribing the total size in bytes of the dtype, which must be largeenough to contain all the fields.
>>>np.dtype({'names':['col1','col2'],'formats':['i4','f4']})dtype([('col1', '<i4'), ('col2', '<f4')])>>>np.dtype({'names':['col1','col2'],...'formats':['i4','f4'],...'offsets':[0,4],...'itemsize':12})dtype({'names': ['col1', 'col2'], 'formats': ['<i4', '<f4'], 'offsets': [0, 4], 'itemsize': 12})
Offsets may be chosen such that the fields overlap, though this will meanthat assigning to one field may clobber any overlapping field’s data. Asan exception, fields of
numpy.object_type cannot overlap withother fields, because of the risk of clobbering the internal objectpointer and then dereferencing it.The optional ‘aligned’ value can be set to
Trueto make the automaticoffset computation use aligned offsets (seeAutomatic byte offsets and alignment),as if the ‘align’ keyword argument ofnumpy.dtypehad been set toTrue.The optional ‘titles’ value should be a list of titles of the same lengthas ‘names’, seeField Titles below.
A dictionary of field names
The keys of the dictionary are the field names and the values are tuplesspecifying type and offset:
>>>np.dtype({'col1':('i1',0),'col2':('f4',1)})dtype([('col1', 'i1'), ('col2', '<f4')])
This form was discouraged because Python dictionaries did not preserve orderin Python versions before Python 3.6.Field Titles may bespecified by using a 3-tuple, see below.
Manipulating and displaying structured datatypes#
The list of field names of a structured datatype can be found in thenamesattribute of the dtype object:
>>>d=np.dtype([('x','i8'),('y','f4')])>>>d.names('x', 'y')
The dtype of each individual field can be looked up by name:
>>>d['x']dtype('int64')
The field names may be modified by assigning to thenames attribute using asequence of strings of the same length.
The dtype object also has a dictionary-like attribute,fields, whose keysare the field names (andField Titles, see below) and whosevalues are tuples containing the dtype and byte offset of each field.
>>>d.fieldsmappingproxy({'x': (dtype('int64'), 0), 'y': (dtype('float32'), 8)})
Both thenames andfields attributes will equalNone forunstructured arrays. The recommended way to test if a dtype is structured iswithif dt.names is not None rather thanif dt.names, to account for dtypeswith 0 fields.
The string representation of a structured datatype is shown in the “list oftuples” form if possible, otherwise numpy falls back to using the more generaldictionary form.
Automatic byte offsets and alignment#
Numpy uses one of two methods to automatically determine the field byte offsetsand the overall itemsize of a structured datatype, depending on whetheralign=True was specified as a keyword argument tonumpy.dtype.
By default (align=False), numpy will pack the fields together such thateach field starts at the byte offset the previous field ended, and the fieldsare contiguous in memory.
>>>defprint_offsets(d):...print("offsets:",[d.fields[name][1]fornameind.names])...print("itemsize:",d.itemsize)>>>print_offsets(np.dtype('u1, u1, i4, u1, i8, u2'))offsets: [0, 1, 2, 6, 7, 15]itemsize: 17
Ifalign=True is set, numpy will pad the structure in the same way many Ccompilers would pad a C-struct. Aligned structures can give a performanceimprovement in some cases, at the cost of increased datatype size. Paddingbytes are inserted between fields such that each field’s byte offset will be amultiple of that field’s alignment, which is usually equal to the field’s sizein bytes for simple datatypes, seePyArray_Descr.alignment. Thestructure will also have trailing padding added so that its itemsize is amultiple of the largest field’s alignment.
>>>print_offsets(np.dtype('u1, u1, i4, u1, i8, u2',align=True))offsets: [0, 1, 4, 8, 16, 24]itemsize: 32
Note that although almost all modern C compilers pad in this way by default,padding in C structs is C-implementation-dependent so this memory layout is notguaranteed to exactly match that of a corresponding struct in a C program. Somework may be needed, either on the numpy side or the C side, to obtain exactcorrespondence.
If offsets were specified using the optionaloffsets key in thedictionary-based dtype specification, settingalign=True will check thateach field’s offset is a multiple of its size and that the itemsize is amultiple of the largest field size, and raise an exception if not.
If the offsets of the fields and itemsize of a structured array satisfy thealignment conditions, the array will have theALIGNEDflag set.
A convenience functionnumpy.lib.recfunctions.repack_fields converts analigned dtype or array to a packed one and vice versa. It takes either a dtypeor structured ndarray as an argument, and returns a copy with fields re-packed,with or without padding bytes.
Field titles#
In addition to field names, fields may also have an associatedtitle,an alternate name, which is sometimes used as an additional description oralias for the field. The title may be used to index an array, just like afield name.
To add titles when using the list-of-tuples form of dtype specification, thefield name may be specified as a tuple of two strings instead of a singlestring, which will be the field’s title and field name respectively. Forexample:
>>>np.dtype([(('my title','name'),'f4')])dtype([(('my title', 'name'), '<f4')])
When using the first form of dictionary-based specification, the titles may besupplied as an extra'titles' key as described above. When using the second(discouraged) dictionary-based specification, the title can be supplied byproviding a 3-element tuple(datatype,offset,title) instead of the usual2-element tuple:
>>>np.dtype({'name':('i4',0,'my title')})dtype([(('my title', 'name'), '<i4')])
Thedtype.fields dictionary will contain titles as keys, if anytitles are used. This means effectively that a field with a title will berepresented twice in the fields dictionary. The tuple values for these fieldswill also have a third element, the field title. Because of this, and becausethenames attribute preserves the field order while thefieldsattribute may not, it is recommended to iterate through the fields of a dtypeusing thenames attribute of the dtype, which will not list titles, asin:
>>>fornameind.names:...print(d.fields[name][:2])(dtype('int64'), 0)(dtype('float32'), 8)
Union types#
Structured datatypes are implemented in numpy to have base typenumpy.void by default, but it is possible to interpret other numpytypes as structured types using the(base_dtype,dtype) form of dtypespecification described inData Type Objects. Here,base_dtype isthe desired underlying dtype, and fields and flags will be copied fromdtype. This dtype is similar to a ‘union’ in C.
Indexing and assignment to structured arrays#
Assigning data to a structured array#
There are a number of ways to assign values to a structured array: Using pythontuples, using scalar values, or using other structured arrays.
Assignment from Python Native Types (Tuples)#
The simplest way to assign values to a structured array is using python tuples.Each assigned value should be a tuple of length equal to the number of fieldsin the array, and not a list or array as these will trigger numpy’sbroadcasting rules. The tuple’s elements are assigned to the successive fieldsof the array, from left to right:
>>>x=np.array([(1,2,3),(4,5,6)],dtype='i8, f4, f8')>>>x[1]=(7,8,9)>>>xarray([(1, 2., 3.), (7, 8., 9.)], dtype=[('f0', '<i8'), ('f1', '<f4'), ('f2', '<f8')])
Assignment from Scalars#
A scalar assigned to a structured element will be assigned to all fields. Thishappens when a scalar is assigned to a structured array, or when anunstructured array is assigned to a structured array:
>>>x=np.zeros(2,dtype='i8, f4, ?, S1')>>>x[:]=3>>>xarray([(3, 3., True, b'3'), (3, 3., True, b'3')], dtype=[('f0', '<i8'), ('f1', '<f4'), ('f2', '?'), ('f3', 'S1')])>>>x[:]=np.arange(2)>>>xarray([(0, 0., False, b'0'), (1, 1., True, b'1')], dtype=[('f0', '<i8'), ('f1', '<f4'), ('f2', '?'), ('f3', 'S1')])
Structured arrays can also be assigned to unstructured arrays, but only if thestructured datatype has just a single field:
>>>twofield=np.zeros(2,dtype=[('A','i4'),('B','i4')])>>>onefield=np.zeros(2,dtype=[('A','i4')])>>>nostruct=np.zeros(2,dtype='i4')>>>nostruct[:]=twofieldTraceback (most recent call last):...TypeError:Cannot cast array data from dtype([('A', '<i4'), ('B', '<i4')]) to dtype('int32') according to the rule 'unsafe'
Assignment from other Structured Arrays#
Assignment between two structured arrays occurs as if the source elements hadbeen converted to tuples and then assigned to the destination elements. Thatis, the first field of the source array is assigned to the first field of thedestination array, and the second field likewise, and so on, regardless offield names. Structured arrays with a different number of fields cannot beassigned to each other. Bytes of the destination structure which are notincluded in any of the fields are unaffected.
>>>a=np.zeros(3,dtype=[('a','i8'),('b','f4'),('c','S3')])>>>b=np.ones(3,dtype=[('x','f4'),('y','S3'),('z','O')])>>>b[:]=a>>>barray([(0., b'0.0', b''), (0., b'0.0', b''), (0., b'0.0', b'')], dtype=[('x', '<f4'), ('y', 'S3'), ('z', 'O')])
Assignment involving subarrays#
When assigning to fields which are subarrays, the assigned value will first bebroadcast to the shape of the subarray.
Indexing structured arrays#
Accessing Individual Fields#
Individual fields of a structured array may be accessed and modified by indexingthe array with the field name.
>>>x=np.array([(1,2),(3,4)],dtype=[('foo','i8'),('bar','f4')])>>>x['foo']array([1, 3])>>>x['foo']=10>>>xarray([(10, 2.), (10, 4.)], dtype=[('foo', '<i8'), ('bar', '<f4')])
The resulting array is a view into the original array. It shares the samememory locations and writing to the view will modify the original array.
>>>y=x['bar']>>>y[:]=11>>>xarray([(10, 11.), (10, 11.)], dtype=[('foo', '<i8'), ('bar', '<f4')])
This view has the same dtype and itemsize as the indexed field, so it istypically a non-structured array, except in the case of nested structures.
>>>y.dtype,y.shape,y.strides(dtype('float32'), (2,), (12,))
If the accessed field is a subarray, the dimensions of the subarrayare appended to the shape of the result:
>>>x=np.zeros((2,2),dtype=[('a',np.int32),('b',np.float64,(3,3))])>>>x['a'].shape(2, 2)>>>x['b'].shape(2, 2, 3, 3)
Accessing Multiple Fields#
One can index and assign to a structured array with a multi-field index, wherethe index is a list of field names.
Warning
The behavior of multi-field indexes changed from Numpy 1.15 to Numpy 1.16.
The result of indexing with a multi-field index is a view into the originalarray, as follows:
>>>a=np.zeros(3,dtype=[('a','i4'),('b','i4'),('c','f4')])>>>a[['a','c']]array([(0, 0.), (0, 0.), (0, 0.)], dtype={'names': ['a', 'c'], 'formats': ['<i4', '<f4'], 'offsets': [0, 8], 'itemsize': 12})
Assignment to the view modifies the original array. The view’s fields will bein the order they were indexed. Note that unlike for single-field indexing, thedtype of the view has the same itemsize as the original array, and has fieldsat the same offsets as in the original array, and unindexed fields are merelymissing.
Warning
In Numpy 1.15, indexing an array with a multi-field index returned a copy ofthe result above, but with fields packed together in memory as ifpassed throughnumpy.lib.recfunctions.repack_fields.
The new behavior as of Numpy 1.16 leads to extra “padding” bytes at thelocation of unindexed fields compared to 1.15. You will need to update anycode which depends on the data having a “packed” layout. For instance codesuch as:
>>>a[['a','c']].view('i8')# Fails in Numpy 1.16Traceback (most recent call last): File "<stdin>", line 1, in <module>ValueError:When changing to a smaller dtype, its size must be a divisor of the size of original dtype
will need to be changed. This code has raised aFutureWarning sinceNumpy 1.12, and similar code has raisedFutureWarning since 1.7.
In 1.16 a number of functions have been introduced in thenumpy.lib.recfunctions module to help users account for thischange. These arenumpy.lib.recfunctions.repack_fields.numpy.lib.recfunctions.structured_to_unstructured,numpy.lib.recfunctions.unstructured_to_structured,numpy.lib.recfunctions.apply_along_fields,numpy.lib.recfunctions.assign_fields_by_name, andnumpy.lib.recfunctions.require_fields.
The functionnumpy.lib.recfunctions.repack_fields can always beused to reproduce the old behavior, as it will return a packed copy of thestructured array. The code above, for example, can be replaced with:
>>>fromnumpy.lib.recfunctionsimportrepack_fields>>>repack_fields(a[['a','c']]).view('i8')# supported in 1.16array([0, 0, 0])
Furthermore, numpy now provides a new functionnumpy.lib.recfunctions.structured_to_unstructured which is a saferand more efficient alternative for users who wish to convert structuredarrays to unstructured arrays, as the view above is often intended to do.This function allows safe conversion to an unstructured type taking intoaccount padding, often avoids a copy, and also casts the datatypesas needed, unlike the view. Code such as:
>>>b=np.zeros(3,dtype=[('x','f4'),('y','f4'),('z','f4')])>>>b[['x','z']].view('f4')array([0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)
can be made safer by replacing with:
>>>fromnumpy.lib.recfunctionsimportstructured_to_unstructured>>>structured_to_unstructured(b[['x','z']])array([[0., 0.], [0., 0.], [0., 0.]], dtype=float32)
Assignment to an array with a multi-field index modifies the original array:
>>>a[['a','c']]=(2,3)>>>aarray([(2, 0, 3.), (2, 0, 3.), (2, 0, 3.)], dtype=[('a', '<i4'), ('b', '<i4'), ('c', '<f4')])
This obeys the structured array assignment rules described above. For example,this means that one can swap the values of two fields using appropriatemulti-field indexes:
>>>a[['a','c']]=a[['c','a']]
Indexing with an Integer to get a Structured Scalar#
Indexing a single element of a structured array (with an integer index) returnsa structured scalar:
>>>x=np.array([(1,2.,3.)],dtype='i, f, f')>>>scalar=x[0]>>>scalarnp.void((1, 2.0, 3.0), dtype=[('f0', '<i4'), ('f1', '<f4'), ('f2', '<f4')])>>>type(scalar)<class 'numpy.void'>
Unlike other numpy scalars, structured scalars are mutable and act like viewsinto the original array, such that modifying the scalar will modify theoriginal array. Structured scalars also support access and assignment by fieldname:
>>>x=np.array([(1,2),(3,4)],dtype=[('foo','i8'),('bar','f4')])>>>s=x[0]>>>s['bar']=100>>>xarray([(1, 100.), (3, 4.)], dtype=[('foo', '<i8'), ('bar', '<f4')])
Similarly to tuples, structured scalars can also be indexed with an integer:
>>>scalar=np.array([(1,2.,3.)],dtype='i, f, f')[0]>>>scalar[0]np.int32(1)>>>scalar[1]=4
Thus, tuples might be thought of as the native Python equivalent to numpy’sstructured types, much like native python integers are the equivalent tonumpy’s integer types. Structured scalars may be converted to a tuple bycallingnumpy.ndarray.item:
>>>scalar.item(),type(scalar.item())((1, 4.0, 3.0), <class 'tuple'>)
Viewing structured arrays containing objects#
In order to prevent clobbering object pointers in fields ofobject type, numpy currently does not allow views of structuredarrays containing objects.
Structure comparison and promotion#
If the dtypes of two void structured arrays are equal, testing the equality ofthe arrays will result in a boolean array with the dimensions of the originalarrays, with elements set toTrue where all fields of the correspondingstructures are equal:
>>>a=np.array([(1,1),(2,2)],dtype=[('a','i4'),('b','i4')])>>>b=np.array([(1,1),(2,3)],dtype=[('a','i4'),('b','i4')])>>>a==barray([True, False])
NumPy will promote individual field datatypes to perform the comparison.So the following is also valid (note the'f4' dtype for the'a' field):
>>>b=np.array([(1.0,1),(2.5,2)],dtype=[("a","f4"),("b","i4")])>>>a==barray([True, False])
To compare two structured arrays, it must be possible to promote them to acommon dtype as returned bynumpy.result_type andnumpy.promote_types.This enforces that the number of fields, the field names, and the field titlesmust match precisely.When promotion is not possible, for example due to mismatching field names,NumPy will raise an error.Promotion between two structured dtypes results in a canonical dtype thatensures native byte-order for all fields:
>>>np.result_type(np.dtype("i,>i"))dtype([('f0', '<i4'), ('f1', '<i4')])>>>np.result_type(np.dtype("i,>i"),np.dtype("i,i"))dtype([('f0', '<i4'), ('f1', '<i4')])
The resulting dtype from promotion is also guaranteed to be packed, meaningthat all fields are ordered contiguously and any unnecessary padding isremoved:
>>>dt=np.dtype("i1,V3,i4,V1")[["f0","f2"]]>>>dtdtype({'names': ['f0', 'f2'], 'formats': ['i1', '<i4'], 'offsets': [0, 4], 'itemsize': 9})>>>np.result_type(dt)dtype([('f0', 'i1'), ('f2', '<i4')])
Note that the result prints withoutoffsets oritemsize indicating noadditional padding.If a structured dtype is created withalign=True ensuring thatdtype.isalignedstruct is true, this property is preserved:
>>>dt=np.dtype("i1,V3,i4,V1",align=True)[["f0","f2"]]>>>dtdtype({'names': ['f0', 'f2'], 'formats': ['i1', '<i4'], 'offsets': [0, 4], 'itemsize': 12}, align=True)>>>np.result_type(dt)dtype([('f0', 'i1'), ('f2', '<i4')], align=True)>>>np.result_type(dt).isalignedstructTrue
When promoting multiple dtypes, the result is aligned if any of the inputs is:
>>>np.result_type(np.dtype("i,i"),np.dtype("i,i",align=True))dtype([('f0', '<i4'), ('f1', '<i4')], align=True)
The< and> operators always returnFalse when comparing voidstructured arrays, and arithmetic and bitwise operations are not supported.
Changed in version 1.23:Before NumPy 1.23, a warning was given andFalse returned whenpromotion to a common dtype failed.Further, promotion was much more restrictive: It would reject the mixedfloat/integer comparison example above.
Record arrays#
As an optional convenience numpy provides an ndarray subclass,numpy.recarray that allows access to fields of structured arraysby attribute instead of only by index.Record arrays use a special datatype,numpy.record, that allowsfield access by attribute on the structured scalars obtained from the array.Thenumpy.rec module provides functions for creating recarrays fromvarious objects.Additional helper functions for creating and manipulating structured arrayscan be found innumpy.lib.recfunctions.
The simplest way to create a record array is withnumpy.rec.array:
>>>recordarr=np.rec.array([(1,2.,'Hello'),(2,3.,"World")],...dtype=[('foo','i4'),('bar','f4'),('baz','S10')])>>>recordarr.bararray([2., 3.], dtype=float32)>>>recordarr[1:2]rec.array([(2, 3., b'World')], dtype=[('foo', '<i4'), ('bar', '<f4'), ('baz', 'S10')])>>>recordarr[1:2].fooarray([2], dtype=int32)>>>recordarr.foo[1:2]array([2], dtype=int32)>>>recordarr[1].bazb'World'
numpy.rec.array can convert a wide varietyof arguments into record arrays, including structured arrays:
>>>arr=np.array([(1,2.,'Hello'),(2,3.,"World")],...dtype=[('foo','i4'),('bar','f4'),('baz','S10')])>>>recordarr=np.rec.array(arr)
Thenumpy.rec module provides a number of other convenience functions forcreating record arrays, seerecord array creation routines.
A record array representation of a structured array can be obtained using theappropriateview:
>>>arr=np.array([(1,2.,'Hello'),(2,3.,"World")],...dtype=[('foo','i4'),('bar','f4'),('baz','S10')])>>>recordarr=arr.view(dtype=np.dtype((np.record,arr.dtype)),...type=np.recarray)
For convenience, viewing an ndarray as typenumpy.recarray willautomatically convert tonumpy.record datatype, so the dtype can be leftout of the view:
>>>recordarr=arr.view(np.recarray)>>>recordarr.dtypedtype((numpy.record, [('foo', '<i4'), ('bar', '<f4'), ('baz', 'S10')]))
To get back to a plain ndarray both the dtype and type must be reset. Thefollowing view does so, taking into account the unusual case that therecordarr was not a structured type:
>>>arr2=recordarr.view(recordarr.dtype.fieldsorrecordarr.dtype,np.ndarray)
Record array fields accessed by index or by attribute are returned as a recordarray if the field has a structured type but as a plain ndarray otherwise.
>>>recordarr=np.rec.array([('Hello',(1,2)),("World",(3,4))],...dtype=[('foo','S6'),('bar',[('A',int),('B',int)])])>>>type(recordarr.foo)<class 'numpy.ndarray'>>>>type(recordarr.bar)<class 'numpy.rec.recarray'>
Note that if a field has the same name as an ndarray attribute, the ndarrayattribute takes precedence. Such fields will be inaccessible by attribute butwill still be accessible by index.
Recarray helper functions#
Collection of utilities to manipulate structured arrays.
Most of these functions were initially implemented by John Hunter formatplotlib. They have been rewritten and extended for convenience.
- numpy.lib.recfunctions.append_fields(base,names,data,dtypes=None,fill_value=-1,usemask=True,asrecarray=False)[source]#
Add new fields to an existing array.
The names of the fields are given with thenames arguments,the corresponding values with thedata arguments.If a single field is appended,names,data anddtypes do not haveto be lists but just values.
- Parameters:
- basearray
Input array to extend.
- namesstring, sequence
String or sequence of strings corresponding to the namesof the new fields.
- dataarray or sequence of arrays
Array or sequence of arrays storing the fields to add to the base.
- dtypessequence of datatypes, optional
Datatype or sequence of datatypes.If None, the datatypes are estimated from thedata.
- fill_value{float}, optional
Filling value used to pad missing data on the shorter arrays.
- usemask{False, True}, optional
Whether to return a masked array or not.
- asrecarray{False, True}, optional
Whether to return a recarray (MaskedRecords) or not.
- numpy.lib.recfunctions.apply_along_fields(func,arr)[source]#
Apply function ‘func’ as a reduction across fields of a structured array.
This is similar to
numpy.apply_along_axis, but treats the fields of astructured array as an extra axis. The fields are all first cast to acommon type following the type-promotion rules fromnumpy.result_typeapplied to the field’s dtypes.- Parameters:
- funcfunction
Function to apply on the “field” dimension. This function mustsupport anaxis argument, like
numpy.mean,numpy.sum, etc.- arrndarray
Structured array for which to apply func.
- Returns:
- outndarray
Result of the reduction operation
Examples
>>>importnumpyasnp
>>>fromnumpy.libimportrecfunctionsasrfn>>>b=np.array([(1,2,5),(4,5,7),(7,8,11),(10,11,12)],...dtype=[('x','i4'),('y','f4'),('z','f8')])>>>rfn.apply_along_fields(np.mean,b)array([ 2.66666667, 5.33333333, 8.66666667, 11. ])>>>rfn.apply_along_fields(np.mean,b[['x','z']])array([ 3. , 5.5, 9. , 11. ])
- numpy.lib.recfunctions.assign_fields_by_name(dst,src,zero_unassigned=True)[source]#
Assigns values from one structured array to another by field name.
Normally in numpy >= 1.14, assignment of one structured array to anothercopies fields “by position”, meaning that the first field from the src iscopied to the first field of the dst, and so on, regardless of field name.
This function instead copies “by field name”, such that fields in the dstare assigned from the identically named field in the src. This appliesrecursively for nested structures. This is how structure assignment workedin numpy >= 1.6 to <= 1.13.
- Parameters:
- dstndarray
- srcndarray
The source and destination arrays during assignment.
- zero_unassignedbool, optional
If True, fields in the dst for which there was no matchingfield in the src are filled with the value 0 (zero). Thiswas the behavior of numpy <= 1.13. If False, those fieldsare not modified.
- numpy.lib.recfunctions.drop_fields(base,drop_names,usemask=True,asrecarray=False)[source]#
Return a new array with fields indrop_names dropped.
Nested fields are supported.
- Parameters:
- basearray
Input array
- drop_namesstring or sequence
String or sequence of strings corresponding to the names of thefields to drop.
- usemask{False, True}, optional
Whether to return a masked array or not.
- asrecarraystring or sequence, optional
Whether to return a recarray or a mrecarray (asrecarray=True) ora plain ndarray or masked array with flexible dtype. The defaultis False.
Examples
>>>importnumpyasnp>>>fromnumpy.libimportrecfunctionsasrfn>>>a=np.array([(1,(2,3.0)),(4,(5,6.0))],...dtype=[('a',np.int64),('b',[('ba',np.double),('bb',np.int64)])])>>>rfn.drop_fields(a,'a')array([((2., 3),), ((5., 6),)], dtype=[('b', [('ba', '<f8'), ('bb', '<i8')])])>>>rfn.drop_fields(a,'ba')array([(1, (3,)), (4, (6,))], dtype=[('a', '<i8'), ('b', [('bb', '<i8')])])>>>rfn.drop_fields(a,['ba','bb'])array([(1,), (4,)], dtype=[('a', '<i8')])
- numpy.lib.recfunctions.find_duplicates(a,key=None,ignoremask=True,return_index=False)[source]#
Find the duplicates in a structured array along a given key
- Parameters:
- aarray-like
Input array
- key{string, None}, optional
Name of the fields along which to check the duplicates.If None, the search is performed by records
- ignoremask{True, False}, optional
Whether masked data should be discarded or considered as duplicates.
- return_index{False, True}, optional
Whether to return the indices of the duplicated values.
Examples
>>>importnumpyasnp>>>fromnumpy.libimportrecfunctionsasrfn>>>ndtype=[('a',int)]>>>a=np.ma.array([1,1,1,2,2,3,3],...mask=[0,0,1,0,0,0,1]).view(ndtype)>>>rfn.find_duplicates(a,ignoremask=True,return_index=True)(masked_array(data=[(1,), (1,), (2,), (2,)], mask=[(False,), (False,), (False,), (False,)], fill_value=(999999,), dtype=[('a', '<i8')]), array([0, 1, 3, 4]))
- numpy.lib.recfunctions.flatten_descr(ndtype)[source]#
Flatten a structured data-type description.
Examples
>>>importnumpyasnp>>>fromnumpy.libimportrecfunctionsasrfn>>>ndtype=np.dtype([('a','<i4'),('b',[('ba','<f8'),('bb','<i4')])])>>>rfn.flatten_descr(ndtype)(('a', dtype('int32')), ('ba', dtype('float64')), ('bb', dtype('int32')))
- numpy.lib.recfunctions.get_fieldstructure(adtype,lastname=None,parents=None)[source]#
Returns a dictionary with fields indexing lists of their parent fields.
This function is used to simplify access to fields nested in other fields.
- Parameters:
- adtypenp.dtype
Input datatype
- lastnameoptional
Last processed field name (used internally during recursion).
- parentsdictionary
Dictionary of parent fields (used internally during recursion).
Examples
>>>importnumpyasnp>>>fromnumpy.libimportrecfunctionsasrfn>>>ndtype=np.dtype([('A',int),...('B',[('BA',int),...('BB',[('BBA',int),('BBB',int)])])])>>>rfn.get_fieldstructure(ndtype)...# XXX: possible regression, order of BBA and BBB is swapped{'A': [], 'B': [], 'BA': ['B'], 'BB': ['B'], 'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']}
- numpy.lib.recfunctions.get_names(adtype)[source]#
Returns the field names of the input datatype as a tuple. Input datatypemust have fields otherwise error is raised.
- Parameters:
- adtypedtype
Input datatype
Examples
>>>importnumpyasnp>>>fromnumpy.libimportrecfunctionsasrfn>>>rfn.get_names(np.empty((1,),dtype=[('A',int)]).dtype)('A',)>>>rfn.get_names(np.empty((1,),dtype=[('A',int),('B',float)]).dtype)('A', 'B')>>>adtype=np.dtype([('a',int),('b',[('ba',int),('bb',int)])])>>>rfn.get_names(adtype)('a', ('b', ('ba', 'bb')))
- numpy.lib.recfunctions.get_names_flat(adtype)[source]#
Returns the field names of the input datatype as a tuple. Input datatypemust have fields otherwise error is raised.Nested structure are flattened beforehand.
- Parameters:
- adtypedtype
Input datatype
Examples
>>>importnumpyasnp>>>fromnumpy.libimportrecfunctionsasrfn>>>rfn.get_names_flat(np.empty((1,),dtype=[('A',int)]).dtype)isNoneFalse>>>rfn.get_names_flat(np.empty((1,),dtype=[('A',int),('B',str)]).dtype)('A', 'B')>>>adtype=np.dtype([('a',int),('b',[('ba',int),('bb',int)])])>>>rfn.get_names_flat(adtype)('a', 'b', 'ba', 'bb')
- numpy.lib.recfunctions.join_by(key,r1,r2,jointype='inner',r1postfix='1',r2postfix='2',defaults=None,usemask=True,asrecarray=False)[source]#
Join arraysr1 andr2 on keykey.
The key should be either a string or a sequence of string correspondingto the fields used to join the array. An exception is raised if thekey field cannot be found in the two input arrays. Neitherr1 norr2 should have any duplicates alongkey: the presence of duplicateswill make the output quite unreliable. Note that duplicates are notlooked for by the algorithm.
- Parameters:
- key{string, sequence}
A string or a sequence of strings corresponding to the fields usedfor comparison.
- r1, r2arrays
Structured arrays.
- jointype{‘inner’, ‘outer’, ‘leftouter’}, optional
If ‘inner’, returns the elements common to both r1 and r2.If ‘outer’, returns the common elements as well as the elements ofr1 not in r2 and the elements of not in r2.If ‘leftouter’, returns the common elements and the elements of r1not in r2.
- r1postfixstring, optional
String appended to the names of the fields of r1 that are presentin r2 but absent of the key.
- r2postfixstring, optional
String appended to the names of the fields of r2 that are presentin r1 but absent of the key.
- defaults{dictionary}, optional
Dictionary mapping field names to the corresponding default values.
- usemask{True, False}, optional
Whether to return a MaskedArray (or MaskedRecords isasrecarray==True) or a ndarray.
- asrecarray{False, True}, optional
Whether to return a recarray (or MaskedRecords ifusemask==True)or just a flexible-type ndarray.
Notes
The output is sorted along the key.
A temporary array is formed by dropping the fields not in the key forthe two arrays and concatenating the result. This array is thensorted, and the common entries selected. The output is constructed byfilling the fields with the selected entries. Matching is notpreserved if there are some duplicates…
- numpy.lib.recfunctions.merge_arrays(seqarrays,fill_value=-1,flatten=False,usemask=False,asrecarray=False)[source]#
Merge arrays field by field.
- Parameters:
- seqarrayssequence of ndarrays
Sequence of arrays
- fill_value{float}, optional
Filling value used to pad missing data on the shorter arrays.
- flatten{False, True}, optional
Whether to collapse nested fields.
- usemask{False, True}, optional
Whether to return a masked array or not.
- asrecarray{False, True}, optional
Whether to return a recarray (MaskedRecords) or not.
Notes
Without a mask, the missing value will be filled with something,depending on what its corresponding type:
-1for integers-1.0for floating point numbers'-'for characters'-1'for stringsTruefor boolean values
XXX: I just obtained these values empirically
Examples
>>>importnumpyasnp>>>fromnumpy.libimportrecfunctionsasrfn>>>rfn.merge_arrays((np.array([1,2]),np.array([10.,20.,30.])))array([( 1, 10.), ( 2, 20.), (-1, 30.)], dtype=[('f0', '<i8'), ('f1', '<f8')])
>>>rfn.merge_arrays((np.array([1,2],dtype=np.int64),...np.array([10.,20.,30.])),usemask=False) array([(1, 10.0), (2, 20.0), (-1, 30.0)], dtype=[('f0', '<i8'), ('f1', '<f8')])>>>rfn.merge_arrays((np.array([1,2]).view([('a',np.int64)]),...np.array([10.,20.,30.])),...usemask=False,asrecarray=True)rec.array([( 1, 10.), ( 2, 20.), (-1, 30.)], dtype=[('a', '<i8'), ('f1', '<f8')])
- numpy.lib.recfunctions.rec_append_fields(base,names,data,dtypes=None)[source]#
Add new fields to an existing array.
The names of the fields are given with thenames arguments,the corresponding values with thedata arguments.If a single field is appended,names,data anddtypes do not haveto be lists but just values.
- Parameters:
- basearray
Input array to extend.
- namesstring, sequence
String or sequence of strings corresponding to the namesof the new fields.
- dataarray or sequence of arrays
Array or sequence of arrays storing the fields to add to the base.
- dtypessequence of datatypes, optional
Datatype or sequence of datatypes.If None, the datatypes are estimated from thedata.
- Returns:
- appended_arraynp.recarray
See also
- numpy.lib.recfunctions.rec_drop_fields(base,drop_names)[source]#
Returns a new numpy.recarray with fields indrop_names dropped.
- numpy.lib.recfunctions.rec_join(key,r1,r2,jointype='inner',r1postfix='1',r2postfix='2',defaults=None)[source]#
Join arraysr1 andr2 on keys.Alternative to join_by, that always returns a np.recarray.
See also
join_byequivalent function
- numpy.lib.recfunctions.recursive_fill_fields(input,output)[source]#
Fills fields from output with fields from input,with support for nested structures.
- Parameters:
- inputndarray
Input array.
- outputndarray
Output array.
Notes
output should be at least the same size asinput
Examples
>>>importnumpyasnp>>>fromnumpy.libimportrecfunctionsasrfn>>>a=np.array([(1,10.),(2,20.)],dtype=[('A',np.int64),('B',np.float64)])>>>b=np.zeros((3,),dtype=a.dtype)>>>rfn.recursive_fill_fields(a,b)array([(1, 10.), (2, 20.), (0, 0.)], dtype=[('A', '<i8'), ('B', '<f8')])
- numpy.lib.recfunctions.rename_fields(base,namemapper)[source]#
Rename the fields from a flexible-datatype ndarray or recarray.
Nested fields are supported.
- Parameters:
- basendarray
Input array whose fields must be modified.
- namemapperdictionary
Dictionary mapping old field names to their new version.
Examples
>>>importnumpyasnp>>>fromnumpy.libimportrecfunctionsasrfn>>>a=np.array([(1,(2,[3.0,30.])),(4,(5,[6.0,60.]))],...dtype=[('a',int),('b',[('ba',float),('bb',(float,2))])])>>>rfn.rename_fields(a,{'a':'A','bb':'BB'})array([(1, (2., [ 3., 30.])), (4, (5., [ 6., 60.]))], dtype=[('A', '<i8'), ('b', [('ba', '<f8'), ('BB', '<f8', (2,))])])
- numpy.lib.recfunctions.repack_fields(a,align=False,recurse=False)[source]#
Re-pack the fields of a structured array or dtype in memory.
The memory layout of structured datatypes allows fields at arbitrarybyte offsets. This means the fields can be separated by padding bytes,their offsets can be non-monotonically increasing, and they can overlap.
This method removes any overlaps and reorders the fields in memory so theyhave increasing byte offsets, and adds or removes padding bytes dependingon thealign option, which behaves like thealign option to
numpy.dtype.Ifalign=False, this method produces a “packed” memory layout in whicheach field starts at the byte the previous field ended, and any paddingbytes are removed.
Ifalign=True, this methods produces an “aligned” memory layout in whicheach field’s offset is a multiple of its alignment, and the total itemsizeis a multiple of the largest alignment, by adding padding bytes as needed.
- Parameters:
- andarray or dtype
array or dtype for which to repack the fields.
- alignboolean
If true, use an “aligned” memory layout, otherwise use a “packed” layout.
- recurseboolean
If True, also repack nested structures.
- Returns:
- repackedndarray or dtype
Copy ofa with fields repacked, ora itself if no repacking wasneeded.
Examples
>>>importnumpyasnp
>>>fromnumpy.libimportrecfunctionsasrfn>>>defprint_offsets(d):...print("offsets:",[d.fields[name][1]fornameind.names])...print("itemsize:",d.itemsize)...>>>dt=np.dtype('u1, <i8, <f8',align=True)>>>dtdtype({'names': ['f0', 'f1', 'f2'], 'formats': ['u1', '<i8', '<f8'], 'offsets': [0, 8, 16], 'itemsize': 24}, align=True)>>>print_offsets(dt)offsets: [0, 8, 16]itemsize: 24>>>packed_dt=rfn.repack_fields(dt)>>>packed_dtdtype([('f0', 'u1'), ('f1', '<i8'), ('f2', '<f8')])>>>print_offsets(packed_dt)offsets: [0, 1, 9]itemsize: 17
- numpy.lib.recfunctions.require_fields(array,required_dtype)[source]#
Casts a structured array to a new dtype using assignment by field-name.
This function assigns from the old to the new array by name, so thevalue of a field in the output array is the value of the field with thesame name in the source array. This has the effect of creating a newndarray containing only the fields “required” by the required_dtype.
If a field name in the required_dtype does not exist in theinput array, that field is created and set to 0 in the output array.
- Parameters:
- andarray
array to cast
- required_dtypedtype
datatype for output array
- Returns:
- outndarray
array with the new dtype, with field values copied from the fields inthe input array with the same name
Examples
>>>importnumpyasnp
>>>fromnumpy.libimportrecfunctionsasrfn>>>a=np.ones(4,dtype=[('a','i4'),('b','f8'),('c','u1')])>>>rfn.require_fields(a,[('b','f4'),('c','u1')])array([(1., 1), (1., 1), (1., 1), (1., 1)], dtype=[('b', '<f4'), ('c', 'u1')])>>>rfn.require_fields(a,[('b','f4'),('newf','u1')])array([(1., 0), (1., 0), (1., 0), (1., 0)], dtype=[('b', '<f4'), ('newf', 'u1')])
- numpy.lib.recfunctions.stack_arrays(arrays,defaults=None,usemask=True,asrecarray=False,autoconvert=False)[source]#
Superposes arrays fields by fields
- Parameters:
- arraysarray or sequence
Sequence of input arrays.
- defaultsdictionary, optional
Dictionary mapping field names to the corresponding default values.
- usemask{True, False}, optional
Whether to return a MaskedArray (or MaskedRecords isasrecarray==True) or a ndarray.
- asrecarray{False, True}, optional
Whether to return a recarray (or MaskedRecords ifusemask==True)or just a flexible-type ndarray.
- autoconvert{False, True}, optional
Whether automatically cast the type of the field to the maximum.
Examples
>>>importnumpyasnp>>>fromnumpy.libimportrecfunctionsasrfn>>>x=np.array([1,2,])>>>rfn.stack_arrays(x)isxTrue>>>z=np.array([('A',1),('B',2)],dtype=[('A','|S3'),('B',float)])>>>zz=np.array([('a',10.,100.),('b',20.,200.),('c',30.,300.)],...dtype=[('A','|S3'),('B',np.double),('C',np.double)])>>>test=rfn.stack_arrays((z,zz))>>>testmasked_array(data=[(b'A', 1.0, --), (b'B', 2.0, --), (b'a', 10.0, 100.0), (b'b', 20.0, 200.0), (b'c', 30.0, 300.0)], mask=[(False, False, True), (False, False, True), (False, False, False), (False, False, False), (False, False, False)], fill_value=(b'N/A', 1e+20, 1e+20), dtype=[('A', 'S3'), ('B', '<f8'), ('C', '<f8')])
- numpy.lib.recfunctions.structured_to_unstructured(arr,dtype=None,copy=False,casting='unsafe')[source]#
Converts an n-D structured array into an (n+1)-D unstructured array.
The new array will have a new last dimension equal in size to thenumber of field-elements of the input array. If not supplied, the outputdatatype is determined from the numpy type promotion rules applied to allthe field datatypes.
Nested fields, as well as each element of any subarray fields, all countas a single field-elements.
- Parameters:
- arrndarray
Structured array or dtype to convert. Cannot contain object datatype.
- dtypedtype, optional
The dtype of the output unstructured array.
- copybool, optional
If true, always return a copy. If false, a view is returned ifpossible, such as when thedtype and strides of the fields aresuitable and the array subtype is one of
numpy.ndarray,numpy.recarrayornumpy.memmap.Changed in version 1.25.0:A view can now be returned if the fields are separated by auniform stride.
- casting{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional
See casting argument of
numpy.ndarray.astype. Controls what kind ofdata casting may occur.
- Returns:
- unstructuredndarray
Unstructured array with one more dimension.
Examples
>>>importnumpyasnp
>>>fromnumpy.libimportrecfunctionsasrfn>>>a=np.zeros(4,dtype=[('a','i4'),('b','f4,u2'),('c','f4',2)])>>>aarray([(0, (0., 0), [0., 0.]), (0, (0., 0), [0., 0.]), (0, (0., 0), [0., 0.]), (0, (0., 0), [0., 0.])], dtype=[('a', '<i4'), ('b', [('f0', '<f4'), ('f1', '<u2')]), ('c', '<f4', (2,))])>>>rfn.structured_to_unstructured(a)array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]])
>>>b=np.array([(1,2,5),(4,5,7),(7,8,11),(10,11,12)],...dtype=[('x','i4'),('y','f4'),('z','f8')])>>>np.mean(rfn.structured_to_unstructured(b[['x','z']]),axis=-1)array([ 3. , 5.5, 9. , 11. ])
- numpy.lib.recfunctions.unstructured_to_structured(arr,dtype=None,names=None,align=False,copy=False,casting='unsafe')[source]#
Converts an n-D unstructured array into an (n-1)-D structured array.
The last dimension of the input array is converted into a structure, withnumber of field-elements equal to the size of the last dimension of theinput array. By default all output fields have the input array’s dtype, butan output structured dtype with an equal number of fields-elements can besupplied instead.
Nested fields, as well as each element of any subarray fields, all counttowards the number of field-elements.
- Parameters:
- arrndarray
Unstructured array or dtype to convert.
- dtypedtype, optional
The structured dtype of the output array
- nameslist of strings, optional
If dtype is not supplied, this specifies the field names for the outputdtype, in order. The field dtypes will be the same as the input array.
- alignboolean, optional
Whether to create an aligned memory layout.
- copybool, optional
See copy argument to
numpy.ndarray.astype. If true, always return acopy. If false, anddtype requirements are satisfied, a view isreturned.- casting{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional
See casting argument of
numpy.ndarray.astype. Controls what kind ofdata casting may occur.
- Returns:
- structuredndarray
Structured array with fewer dimensions.
Examples
>>>importnumpyasnp
>>>fromnumpy.libimportrecfunctionsasrfn>>>dt=np.dtype([('a','i4'),('b','f4,u2'),('c','f4',2)])>>>a=np.arange(20).reshape((4,5))>>>aarray([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]])>>>rfn.unstructured_to_structured(a,dt)array([( 0, ( 1., 2), [ 3., 4.]), ( 5, ( 6., 7), [ 8., 9.]), (10, (11., 12), [13., 14.]), (15, (16., 17), [18., 19.])], dtype=[('a', '<i4'), ('b', [('f0', '<f4'), ('f1', '<u2')]), ('c', '<f4', (2,))])