numpy.random.Generator.pareto#
method
- random.Generator.pareto(a,size=None)#
Draw samples from a Pareto II (AKA Lomax) distribution withspecified shape.
- Parameters:
- afloat or array_like of floats
Shape of the distribution. Must be positive.
- sizeint or tuple of ints, optional
Output shape. If the given shape is, e.g.,
(m,n,k), thenm*n*ksamples are drawn. If size isNone(default),a single value is returned ifais a scalar. Otherwise,np.array(a).sizesamples are drawn.
- Returns:
- outndarray or scalar
Drawn samples from the Pareto II distribution.
See also
scipy.stats.paretoPareto I distribution
scipy.stats.lomaxLomax (Pareto II) distribution
scipy.stats.genparetoGeneralized Pareto distribution
Notes
The probability density for the Pareto II distribution is
\[p(x) = \frac{a}{(x+1)^{a+1}} , x \ge 0\]where\(a > 0\) is the shape.
The Pareto II distribution is a shifted and scaled version of thePareto I distribution, which can be found in
scipy.stats.pareto.References
[1]Francis Hunt and Paul Johnson, On the Pareto Distribution ofSourceforge projects.
[2]Pareto, V. (1896). Course of Political Economy. Lausanne.
[3]Reiss, R.D., Thomas, M.(2001), Statistical Analysis of ExtremeValues, Birkhauser Verlag, Basel, pp 23-30.
[4]Wikipedia, “Pareto distribution”,https://en.wikipedia.org/wiki/Pareto_distribution
Examples
Draw samples from the distribution:
>>>a=3.>>>rng=np.random.default_rng()>>>s=rng.pareto(a,10000)
Display the histogram of the samples, along with the probabilitydensity function:
>>>importmatplotlib.pyplotasplt>>>x=np.linspace(0,3,50)>>>pdf=a/(x+1)**(a+1)>>>plt.hist(s,bins=x,density=True,label='histogram')>>>plt.plot(x,pdf,linewidth=2,color='r',label='pdf')>>>plt.xlim(x.min(),x.max())>>>plt.legend()>>>plt.show()
