numpy.take#
- numpy.take(a,indices,axis=None,out=None,mode='raise')[source]#
Take elements from an array along an axis.
When axis is not None, this function does the same thing as “fancy”indexing (indexing arrays using arrays); however, it can be easier to useif you need elements along a given axis. A call such as
np.take(arr,indices,axis=3)is equivalent toarr[:,:,:,indices,...].Explained without fancy indexing, this is equivalent to the following useof
ndindex, which sets each ofii,jj, andkkto a tuple ofindices:Ni,Nk=a.shape[:axis],a.shape[axis+1:]Nj=indices.shapeforiiinndindex(Ni):forjjinndindex(Nj):forkkinndindex(Nk):out[ii+jj+kk]=a[ii+(indices[jj],)+kk]
- Parameters:
- aarray_like (Ni…, M, Nk…)
The source array.
- indicesarray_like (Nj…)
The indices of the values to extract.Also allow scalars for indices.
- axisint, optional
The axis over which to select values. By default, the flattenedinput array is used.
- outndarray, optional (Ni…, Nj…, Nk…)
If provided, the result will be placed in this array. It shouldbe of the appropriate shape and dtype. Note thatout is alwaysbuffered ifmode=’raise’; use other modes for better performance.
- mode{‘raise’, ‘wrap’, ‘clip’}, optional
Specifies how out-of-bounds indices will behave.
‘raise’ – raise an error (default)
‘wrap’ – wrap around
‘clip’ – clip to the range
‘clip’ mode means that all indices that are too large are replacedby the index that addresses the last element along that axis. Notethat this disables indexing with negative numbers.
- Returns:
- outndarray (Ni…, Nj…, Nk…)
The returned array has the same type asa.
See also
compressTake elements using a boolean mask
ndarray.takeequivalent method
take_along_axisTake elements by matching the array and the index arrays
Notes
By eliminating the inner loop in the description above, and using
s_tobuild simple slice objects,takecan be expressed in terms of applyingfancy indexing to each 1-d slice:Ni,Nk=a.shape[:axis],a.shape[axis+1:]foriiinndindex(Ni):forkkinndindex(Nj):out[ii+s_[...,]+kk]=a[ii+s_[:,]+kk][indices]
For this reason, it is equivalent to (but faster than) the following useof
apply_along_axis:out=np.apply_along_axis(lambdaa_1d:a_1d[indices],axis,a)
Examples
>>>importnumpyasnp>>>a=[4,3,5,7,6,8]>>>indices=[0,1,4]>>>np.take(a,indices)array([4, 3, 6])
In this example ifa is an ndarray, “fancy” indexing can be used.
>>>a=np.array(a)>>>a[indices]array([4, 3, 6])
If
indicesis not one dimensional, the output also has these dimensions.>>>np.take(a,[[0,1],[2,3]])array([[4, 3], [5, 7]])