numpy.not_equal#

numpy.not_equal(x1,x2,/,out=None,*,where=True,casting='same_kind',order='K',dtype=None,subok=True[,signature])=<ufunc'not_equal'>#

Return (x1 != x2) element-wise.

Parameters:
x1, x2array_like

Input arrays.Ifx1.shape!=x2.shape, they must be broadcastable to a commonshape (which becomes the shape of the output).

outndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must havea shape that the inputs broadcast to. If not provided or None,a freshly-allocated array is returned. A tuple (possible only as akeyword argument) must have length equal to the number of outputs.

wherearray_like, optional

This condition is broadcast over the input. At locations where thecondition is True, theout array will be set to the ufunc result.Elsewhere, theout array will retain its original value.Note that if an uninitializedout array is created via the defaultout=None, locations within it where the condition is False willremain uninitialized.

**kwargs

For other keyword-only arguments, see theufunc docs.

Returns:
outndarray or scalar

Output array, element-wise comparison ofx1 andx2.Typically of type bool, unlessdtype=object is passed.This is a scalar if bothx1 andx2 are scalars.

Examples

>>>importnumpyasnp>>>np.not_equal([1.,2.],[1.,3.])array([False,  True])>>>np.not_equal([1,2],[[1,3],[1,4]])array([[False,  True],       [False,  True]])

The!= operator can be used as a shorthand fornp.not_equal onndarrays.

>>>a=np.array([1.,2.])>>>b=np.array([1.,3.])>>>a!=barray([False,  True])
On this page