numpy.linalg.eigvalsh#
- linalg.eigvalsh(a,UPLO='L')[source]#
Compute the eigenvalues of a complex Hermitian or real symmetric matrix.
Main difference from eigh: the eigenvectors are not computed.
- Parameters:
- a(…, M, M) array_like
A complex- or real-valued matrix whose eigenvalues are to becomputed.
- UPLO{‘L’, ‘U’}, optional
Specifies whether the calculation is done with the lower triangularpart ofa (‘L’, default) or the upper triangular part (‘U’).Irrespective of this value only the real parts of the diagonal willbe considered in the computation to preserve the notion of a Hermitianmatrix. It therefore follows that the imaginary part of the diagonalwill always be treated as zero.
- Returns:
- w(…, M,) ndarray
The eigenvalues in ascending order, each repeated according toits multiplicity.
- Raises:
- LinAlgError
If the eigenvalue computation does not converge.
See also
eigheigenvalues and eigenvectors of real symmetric or complex Hermitian (conjugate symmetric) arrays.
eigvalseigenvalues of general real or complex arrays.
eigeigenvalues and right eigenvectors of general real or complex arrays.
scipy.linalg.eigvalshSimilar function in SciPy.
Notes
Broadcasting rules apply, see the
numpy.linalgdocumentation fordetails.The eigenvalues are computed using LAPACK routines
_syevd,_heevd.Examples
>>>importnumpyasnp>>>fromnumpyimportlinalgasLA>>>a=np.array([[1,-2j],[2j,5]])>>>LA.eigvalsh(a)array([ 0.17157288, 5.82842712]) # may vary
>>># demonstrate the treatment of the imaginary part of the diagonal>>>a=np.array([[5+2j,9-2j],[0+2j,2-1j]])>>>aarray([[5.+2.j, 9.-2.j], [0.+2.j, 2.-1.j]])>>># with UPLO='L' this is numerically equivalent to using LA.eigvals()>>># with:>>>b=np.array([[5.+0.j,0.-2.j],[0.+2.j,2.-0.j]])>>>barray([[5.+0.j, 0.-2.j], [0.+2.j, 2.+0.j]])>>>wa=LA.eigvalsh(a)>>>wb=LA.eigvals(b)>>>waarray([1., 6.])>>>wbarray([6.+0.j, 1.+0.j])