numpy.linalg.eigvals#
- linalg.eigvals(a)[source]#
Compute the eigenvalues of a general matrix.
Main difference between
eigvalsandeig: the eigenvectors aren’treturned.- Parameters:
- a(…, M, M) array_like
A complex- or real-valued matrix whose eigenvalues will be computed.
- Returns:
- w(…, M,) ndarray
The eigenvalues, each repeated according to its multiplicity.They are not necessarily ordered, nor are they necessarilyreal for real matrices.
- Raises:
- LinAlgError
If the eigenvalue computation does not converge.
See also
eigeigenvalues and right eigenvectors of general arrays
eigvalsheigenvalues of real symmetric or complex Hermitian (conjugate symmetric) arrays.
eigheigenvalues and eigenvectors of real symmetric or complex Hermitian (conjugate symmetric) arrays.
scipy.linalg.eigvalsSimilar function in SciPy.
Notes
Broadcasting rules apply, see the
numpy.linalgdocumentation fordetails.This is implemented using the
_geevLAPACK routines which computethe eigenvalues and eigenvectors of general square arrays.Examples
Illustration, using the fact that the eigenvalues of a diagonal matrixare its diagonal elements, that multiplying a matrix on the leftby an orthogonal matrix,Q, and on the right byQ.T (the transposeofQ), preserves the eigenvalues of the “middle” matrix. In other words,ifQ is orthogonal, then
Q*A*Q.Thas the same eigenvalues asA:>>>importnumpyasnp>>>fromnumpyimportlinalgasLA>>>x=np.random.random()>>>Q=np.array([[np.cos(x),-np.sin(x)],[np.sin(x),np.cos(x)]])>>>LA.norm(Q[0,:]),LA.norm(Q[1,:]),np.dot(Q[0,:],Q[1,:])(1.0, 1.0, 0.0)
Now multiply a diagonal matrix by
Qon one side andbyQ.Ton the other:>>>D=np.diag((-1,1))>>>LA.eigvals(D)array([-1., 1.])>>>A=np.dot(Q,D)>>>A=np.dot(A,Q.T)>>>LA.eigvals(A)array([ 1., -1.]) # random