numpy.full_like#
- numpy.full_like(a,fill_value,dtype=None,order='K',subok=True,shape=None,*,device=None)[source]#
Return a full array with the same shape and type as a given array.
- Parameters:
- aarray_like
The shape and data-type ofa define these same attributes ofthe returned array.
- fill_valuearray_like
Fill value.
- dtypedata-type, optional
Overrides the data type of the result.
- order{‘C’, ‘F’, ‘A’, or ‘K’}, optional
Overrides the memory layout of the result. ‘C’ means C-order,‘F’ means F-order, ‘A’ means ‘F’ ifa is Fortran contiguous,‘C’ otherwise. ‘K’ means match the layout ofa as closelyas possible.
- subokbool, optional.
If True, then the newly created array will use the sub-classtype ofa, otherwise it will be a base-class array. Defaultsto True.
- shapeint or sequence of ints, optional.
Overrides the shape of the result. If order=’K’ and the number ofdimensions is unchanged, will try to keep order, otherwise,order=’C’ is implied.
- devicestr, optional
The device on which to place the created array. Default: None.For Array-API interoperability only, so must be
"cpu"if passed.New in version 2.0.0.
- Returns:
- outndarray
Array offill_value with the same shape and type asa.
See also
empty_likeReturn an empty array with shape and type of input.
ones_likeReturn an array of ones with shape and type of input.
zeros_likeReturn an array of zeros with shape and type of input.
fullReturn a new array of given shape filled with value.
Examples
>>>importnumpyasnp>>>x=np.arange(6,dtype=int)>>>np.full_like(x,1)array([1, 1, 1, 1, 1, 1])>>>np.full_like(x,0.1)array([0, 0, 0, 0, 0, 0])>>>np.full_like(x,0.1,dtype=np.double)array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])>>>np.full_like(x,np.nan,dtype=np.double)array([nan, nan, nan, nan, nan, nan])
>>>y=np.arange(6,dtype=np.double)>>>np.full_like(y,0.1)array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
>>>y=np.zeros([2,2,3],dtype=int)>>>np.full_like(y,[0,0,255])array([[[ 0, 0, 255], [ 0, 0, 255]], [[ 0, 0, 255], [ 0, 0, 255]]])