numpy.frombuffer#
- numpy.frombuffer(buffer,dtype=float,count=-1,offset=0,*,like=None)#
Interpret a buffer as a 1-dimensional array.
- Parameters:
- bufferbuffer_like
An object that exposes the buffer interface.
- dtypedata-type, optional
Data-type of the returned array. Default is
numpy.float64.- countint, optional
Number of items to read.
-1means all data in the buffer.- offsetint, optional
Start reading the buffer from this offset (in bytes); default: 0.
- likearray_like, optional
Reference object to allow the creation of arrays which are notNumPy arrays. If an array-like passed in as
likesupportsthe__array_function__protocol, the result will be definedby it. In this case, it ensures the creation of an array objectcompatible with that passed in via this argument.New in version 1.20.0.
- Returns:
- outndarray
See also
ndarray.tobytesInverse of this operation, construct Python bytes from the raw data bytes in the array.
Notes
If the buffer has data that is not in machine byte-order, this shouldbe specified as part of the data-type, e.g.:
>>>dt=np.dtype(int)>>>dt=dt.newbyteorder('>')>>>np.frombuffer(buf,dtype=dt)
The data of the resulting array will not be byteswapped, but will beinterpreted correctly.
This function creates a view into the original object. This should be safein general, but it may make sense to copy the result when the originalobject is mutable or untrusted.
Examples
>>>importnumpyasnp>>>s=b'hello world'>>>np.frombuffer(s,dtype='S1',count=5,offset=6)array([b'w', b'o', b'r', b'l', b'd'], dtype='|S1')
>>>np.frombuffer(b'\x01\x02',dtype=np.uint8)array([1, 2], dtype=uint8)>>>np.frombuffer(b'\x01\x02\x03\x04\x05',dtype=np.uint8,count=3)array([1, 2, 3], dtype=uint8)