numpy.clip#
- numpy.clip(a,a_min=<novalue>,a_max=<novalue>,out=None,*,min=<novalue>,max=<novalue>,**kwargs)[source]#
Clip (limit) the values in an array.
Given an interval, values outside the interval are clipped tothe interval edges. For example, if an interval of
[0,1]is specified, values smaller than 0 become 0, and values largerthan 1 become 1.Equivalent to but faster than
np.minimum(a_max,np.maximum(a,a_min)).No check is performed to ensure
a_min<a_max.- Parameters:
- aarray_like
Array containing elements to clip.
- a_min, a_maxarray_like or None
Minimum and maximum value. If
None, clipping is not performed onthe corresponding edge. If botha_minanda_maxareNone,the elements of the returned array stay the same. Both are broadcastedagainsta.- outndarray, optional
The results will be placed in this array. It may be the inputarray for in-place clipping.out must be of the right shapeto hold the output. Its type is preserved.
- min, maxarray_like or None
Array API compatible alternatives for
a_minanda_maxarguments. Eithera_minanda_maxorminandmaxcan be passed at the same time. Default:None.New in version 2.1.0.
- **kwargs
For other keyword-only arguments, see theufunc docs.
- Returns:
- clipped_arrayndarray
An array with the elements ofa, but where values<a_min are replaced witha_min, and those >a_maxwitha_max.
See also
Notes
Whena_min is greater thana_max,
clipreturns anarray in which all values are equal toa_max,as shown in the second example.Examples
>>>importnumpyasnp>>>a=np.arange(10)>>>aarray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])>>>np.clip(a,1,8)array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])>>>np.clip(a,8,1)array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1])>>>np.clip(a,3,6,out=a)array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])>>>aarray([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])>>>a=np.arange(10)>>>aarray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])>>>np.clip(a,[3,4,1,1,1,4,4,4,4,4],8)array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])