numpy.array_equal#
- numpy.array_equal(a1,a2,equal_nan=False)[source]#
True if two arrays have the same shape and elements, False otherwise.
- Parameters:
- a1, a2array_like
Input arrays.
- equal_nanbool
Whether to compare NaN’s as equal. If the dtype of a1 and a2 iscomplex, values will be considered equal if either the real or theimaginary component of a given value is
nan
.
- Returns:
- bbool
Returns True if the arrays are equal.
See also
allclose
Returns True if two arrays are element-wise equal within a tolerance.
array_equiv
Returns True if input arrays are shape consistent and all elements equal.
Examples
>>>importnumpyasnp
>>>np.array_equal([1,2],[1,2])True
>>>np.array_equal(np.array([1,2]),np.array([1,2]))True
>>>np.array_equal([1,2],[1,2,3])False
>>>np.array_equal([1,2],[1,4])False
>>>a=np.array([1,np.nan])>>>np.array_equal(a,a)False
>>>np.array_equal(a,a,equal_nan=True)True
When
equal_nan
is True, complex values with nan components areconsidered equal if either the realor the imaginary components are nan.>>>a=np.array([1+1j])>>>b=a.copy()>>>a.real=np.nan>>>b.imag=np.nan>>>np.array_equal(a,b,equal_nan=True)True
On this page