numpy.power#
- numpy.power(x1,x2,/,out=None,*,where=True,casting='same_kind',order='K',dtype=None,subok=True[,signature])=<ufunc'power'>#
First array elements raised to powers from second array, element-wise.
Raise each base inx1 to the positionally-corresponding power inx2.x1 andx2 must be broadcastable to the same shape.
An integer type raised to a negative integer power will raise a
ValueError.Negative values raised to a non-integral value will return
nan.To get complex results, cast the input to complex, or specify thedtypeto becomplex(see the example below).- Parameters:
- x1array_like
The bases.
- x2array_like
The exponents.If
x1.shape!=x2.shape, they must be broadcastable to a commonshape (which becomes the shape of the output).- outndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must havea shape that the inputs broadcast to. If not provided or None,a freshly-allocated array is returned. A tuple (possible only as akeyword argument) must have length equal to the number of outputs.
- wherearray_like, optional
This condition is broadcast over the input. At locations where thecondition is True, theout array will be set to the ufunc result.Elsewhere, theout array will retain its original value.Note that if an uninitializedout array is created via the default
out=None, locations within it where the condition is False willremain uninitialized.- **kwargs
For other keyword-only arguments, see theufunc docs.
- Returns:
- yndarray
The bases inx1 raised to the exponents inx2.This is a scalar if bothx1 andx2 are scalars.
See also
float_powerpower function that promotes integers to float
Examples
>>>importnumpyasnp
Cube each element in an array.
>>>x1=np.arange(6)>>>x1[0, 1, 2, 3, 4, 5]>>>np.power(x1,3)array([ 0, 1, 8, 27, 64, 125])
Raise the bases to different exponents.
>>>x2=[1.0,2.0,3.0,3.0,2.0,1.0]>>>np.power(x1,x2)array([ 0., 1., 8., 27., 16., 5.])
The effect of broadcasting.
>>>x2=np.array([[1,2,3,3,2,1],[1,2,3,3,2,1]])>>>x2array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])>>>np.power(x1,x2)array([[ 0, 1, 8, 27, 16, 5], [ 0, 1, 8, 27, 16, 5]])
The
**operator can be used as a shorthand fornp.poweronndarrays.>>>x2=np.array([1,2,3,3,2,1])>>>x1=np.arange(6)>>>x1**x2array([ 0, 1, 8, 27, 16, 5])
Negative values raised to a non-integral value will result in
nan(and a warning will be generated).>>>x3=np.array([-1.0,-4.0])>>>withnp.errstate(invalid='ignore'):...p=np.power(x3,1.5)...>>>parray([nan, nan])
To get complex results, give the argument
dtype=complex.>>>np.power(x3,1.5,dtype=complex)array([-1.83697020e-16-1.j, -1.46957616e-15-8.j])