numpy.ma.median#
- ma.median(a,axis=None,out=None,overwrite_input=False,keepdims=False)[source]#
Compute the median along the specified axis.
Returns the median of the array elements.
- Parameters:
- aarray_like
Input array or object that can be converted to an array.
- axisint, optional
Axis along which the medians are computed. The default (None) isto compute the median along a flattened version of the array.
- outndarray, optional
Alternative output array in which to place the result. It musthave the same shape and buffer length as the expected outputbut the type will be cast if necessary.
- overwrite_inputbool, optional
If True, then allow use of memory of input array (a) forcalculations. The input array will be modified by the call tomedian. This will save memory when you do not need to preservethe contents of the input array. Treat the input as undefined,but it will probably be fully or partially sorted. Default isFalse. Note that, ifoverwrite_input is True, and the inputis not already an
ndarray, an error will be raised.- keepdimsbool, optional
If this is set to True, the axes which are reduced are leftin the result as dimensions with size one. With this option,the result will broadcast correctly against the input array.
- Returns:
See also
Notes
Given a vector
VwithNnon masked values, the median ofVis the middle value of a sorted copy ofV(Vs) - i.e.Vs[(N-1)/2], whenNis odd, or{Vs[N/2-1]+Vs[N/2]}/2whenNis even.Examples
>>>importnumpyasnp>>>x=np.ma.array(np.arange(8),mask=[0]*4+[1]*4)>>>np.ma.median(x)1.5
>>>x=np.ma.array(np.arange(10).reshape(2,5),mask=[0]*6+[1]*4)>>>np.ma.median(x)2.5>>>np.ma.median(x,axis=-1,overwrite_input=True)masked_array(data=[2.0, 5.0], mask=[False, False], fill_value=1e+20)