numpy.ma.count_masked#

ma.count_masked(arr,axis=None)[source]#

Count the number of masked elements along the given axis.

Parameters:
arrarray_like

An array with (possibly) masked elements.

axisint, optional

Axis along which to count. If None (default), a flattenedversion of the array is used.

Returns:
countint, ndarray

The total number of masked elements (axis=None) or the numberof masked elements along each slice of the given axis.

See also

MaskedArray.count

Count non-masked elements.

Examples

>>>importnumpyasnp>>>a=np.arange(9).reshape((3,3))>>>a=np.ma.array(a)>>>a[1,0]=np.ma.masked>>>a[1,2]=np.ma.masked>>>a[2,1]=np.ma.masked>>>amasked_array(  data=[[0, 1, 2],        [--, 4, --],        [6, --, 8]],  mask=[[False, False, False],        [ True, False,  True],        [False,  True, False]],  fill_value=999999)>>>np.ma.count_masked(a)3

When theaxis keyword is used an array is returned.

>>>np.ma.count_masked(a,axis=0)array([1, 1, 1])>>>np.ma.count_masked(a,axis=1)array([0, 2, 1])
On this page