numpy.ma.count_masked#
- ma.count_masked(arr,axis=None)[source]#
Count the number of masked elements along the given axis.
- Parameters:
- arrarray_like
An array with (possibly) masked elements.
- axisint, optional
Axis along which to count. If None (default), a flattenedversion of the array is used.
- Returns:
- countint, ndarray
The total number of masked elements (axis=None) or the numberof masked elements along each slice of the given axis.
See also
MaskedArray.countCount non-masked elements.
Examples
>>>importnumpyasnp>>>a=np.arange(9).reshape((3,3))>>>a=np.ma.array(a)>>>a[1,0]=np.ma.masked>>>a[1,2]=np.ma.masked>>>a[2,1]=np.ma.masked>>>amasked_array( data=[[0, 1, 2], [--, 4, --], [6, --, 8]], mask=[[False, False, False], [ True, False, True], [False, True, False]], fill_value=999999)>>>np.ma.count_masked(a)3
When theaxis keyword is used an array is returned.
>>>np.ma.count_masked(a,axis=0)array([1, 1, 1])>>>np.ma.count_masked(a,axis=1)array([0, 2, 1])
On this page