numpy.array#
- numpy.array(object,dtype=None,*,copy=True,order='K',subok=False,ndmin=0,like=None)#
Create an array.
- Parameters:
- objectarray_like
An array, any object exposing the array interface, an object whose
__array__method returns an array, or any (nested) sequence.If object is a scalar, a 0-dimensional array containing object isreturned.- dtypedata-type, optional
The desired data-type for the array. If not given, NumPy will try to usea default
dtypethat can represent the values (by applying promotionrules when necessary.)- copybool, optional
If
True(default), then the array data is copied. IfNone,a copy will only be made if__array__returns a copy, if obj isa nested sequence, or if a copy is needed to satisfy any of the otherrequirements (dtype,order, etc.). Note that any copy ofthe data is shallow, i.e., for arrays with object dtype, the newarray will point to the same objects. See Examples forndarray.copy.ForFalseit raises aValueErrorif a copy cannot be avoided.Default:True.- order{‘K’, ‘A’, ‘C’, ‘F’}, optional
Specify the memory layout of the array. If object is not an array, thenewly created array will be in C order (row major) unless ‘F’ isspecified, in which case it will be in Fortran order (column major).If object is an array the following holds.
order
no copy
copy=True
‘K’
unchanged
F & C order preserved, otherwise most similar order
‘A’
unchanged
F order if input is F and not C, otherwise C order
‘C’
C order
C order
‘F’
F order
F order
When
copy=Noneand a copy is made for other reasons, the result isthe same as ifcopy=True, with some exceptions for ‘A’, see theNotes section. The default order is ‘K’.- subokbool, optional
If True, then sub-classes will be passed-through, otherwisethe returned array will be forced to be a base-class array (default).
- ndminint, optional
Specifies the minimum number of dimensions that the resultingarray should have. Ones will be prepended to the shape asneeded to meet this requirement.
- likearray_like, optional
Reference object to allow the creation of arrays which are notNumPy arrays. If an array-like passed in as
likesupportsthe__array_function__protocol, the result will be definedby it. In this case, it ensures the creation of an array objectcompatible with that passed in via this argument.New in version 1.20.0.
- Returns:
- outndarray
An array object satisfying the specified requirements.
See also
empty_likeReturn an empty array with shape and type of input.
ones_likeReturn an array of ones with shape and type of input.
zeros_likeReturn an array of zeros with shape and type of input.
full_likeReturn a new array with shape of input filled with value.
emptyReturn a new uninitialized array.
onesReturn a new array setting values to one.
zerosReturn a new array setting values to zero.
fullReturn a new array of given shape filled with value.
copyReturn an array copy of the given object.
Notes
When order is ‘A’ and
objectis an array in neither ‘C’ nor ‘F’ order,and a copy is forced by a change in dtype, then the order of the result isnot necessarily ‘C’ as expected. This is likely a bug.Examples
>>>importnumpyasnp>>>np.array([1,2,3])array([1, 2, 3])
Upcasting:
>>>np.array([1,2,3.0])array([ 1., 2., 3.])
More than one dimension:
>>>np.array([[1,2],[3,4]])array([[1, 2], [3, 4]])
Minimum dimensions 2:
>>>np.array([1,2,3],ndmin=2)array([[1, 2, 3]])
Type provided:
>>>np.array([1,2,3],dtype=complex)array([ 1.+0.j, 2.+0.j, 3.+0.j])
Data-type consisting of more than one element:
>>>x=np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')])>>>x['a']array([1, 3], dtype=int32)
Creating an array from sub-classes:
>>>np.array(np.asmatrix('1 2; 3 4'))array([[1, 2], [3, 4]])
>>>np.array(np.asmatrix('1 2; 3 4'),subok=True)matrix([[1, 2], [3, 4]])