numpy.median#
- numpy.median(a,axis=None,out=None,overwrite_input=False,keepdims=False)[source]#
Compute the median along the specified axis.
Returns the median of the array elements.
- Parameters:
- aarray_like
Input array or object that can be converted to an array.
- axis{int, sequence of int, None}, optional
Axis or axes along which the medians are computed. The default,axis=None, will compute the median along a flattened version ofthe array. If a sequence of axes, the array is first flattenedalong the given axes, then the median is computed along theresulting flattened axis.
- outndarray, optional
Alternative output array in which to place the result. It musthave the same shape and buffer length as the expected output,but the type (of the output) will be cast if necessary.
- overwrite_inputbool, optional
If True, then allow use of memory of input arraya forcalculations. The input array will be modified by the call to
median
. This will save memory when you do not need to preservethe contents of the input array. Treat the input as undefined,but it will probably be fully or partially sorted. Default isFalse. Ifoverwrite_input isTrue
anda is not already anndarray
, an error will be raised.- keepdimsbool, optional
If this is set to True, the axes which are reduced are leftin the result as dimensions with size one. With this option,the result will broadcast correctly against the originalarr.
- Returns:
- medianndarray
A new array holding the result. If the input contains integersor floats smaller than
float64
, then the output data-type isnp.float64
. Otherwise, the data-type of the output is thesame as that of the input. Ifout is specified, that array isreturned instead.
See also
Notes
Given a vector
V
of lengthN
, the median ofV
is themiddle value of a sorted copy ofV
,V_sorted
- ie.,V_sorted[(N-1)/2]
, whenN
is odd, and the average of thetwo middle values ofV_sorted
whenN
is even.Examples
>>>importnumpyasnp>>>a=np.array([[10,7,4],[3,2,1]])>>>aarray([[10, 7, 4], [ 3, 2, 1]])>>>np.median(a)np.float64(3.5)>>>np.median(a,axis=0)array([6.5, 4.5, 2.5])>>>np.median(a,axis=1)array([7., 2.])>>>np.median(a,axis=(0,1))np.float64(3.5)>>>m=np.median(a,axis=0)>>>out=np.zeros_like(m)>>>np.median(a,axis=0,out=m)array([6.5, 4.5, 2.5])>>>marray([6.5, 4.5, 2.5])>>>b=a.copy()>>>np.median(b,axis=1,overwrite_input=True)array([7., 2.])>>>assertnotnp.all(a==b)>>>b=a.copy()>>>np.median(b,axis=None,overwrite_input=True)np.float64(3.5)>>>assertnotnp.all(a==b)