numpy.copy#
- numpy.copy(a,order='K',subok=False)[source]#
Return an array copy of the given object.
- Parameters:
- aarray_like
Input data.
- order{‘C’, ‘F’, ‘A’, ‘K’}, optional
Controls the memory layout of the copy. ‘C’ means C-order,‘F’ means F-order, ‘A’ means ‘F’ ifa is Fortran contiguous,‘C’ otherwise. ‘K’ means match the layout ofa as closelyas possible. (Note that this function and
ndarray.copy
are verysimilar, but have different default values for their order=arguments.)- subokbool, optional
If True, then sub-classes will be passed-through, otherwise thereturned array will be forced to be a base-class array (defaults to False).
- Returns:
- arrndarray
Array interpretation ofa.
See also
ndarray.copy
Preferred method for creating an array copy
Notes
This is equivalent to:
>>>np.array(a,copy=True)
The copy made of the data is shallow, i.e., for arrays with object dtype,the new array will point to the same objects.See Examples from
ndarray.copy
.Examples
>>>importnumpyasnp
Create an array x, with a reference y and a copy z:
>>>x=np.array([1,2,3])>>>y=x>>>z=np.copy(x)
Note that, when we modify x, y changes, but not z:
>>>x[0]=10>>>x[0]==y[0]True>>>x[0]==z[0]False
Note that, np.copy clears previously set WRITEABLE=False flag.
>>>a=np.array([1,2,3])>>>a.flags["WRITEABLE"]=False>>>b=np.copy(a)>>>b.flags["WRITEABLE"]True>>>b[0]=3>>>barray([3, 2, 3])