numpy.asfortranarray#
- numpy.asfortranarray(a,dtype=None,*,like=None)#
Return an array (ndim >= 1) laid out in Fortran order in memory.
- Parameters:
- aarray_like
Input array.
- dtypestr or dtype object, optional
By default, the data-type is inferred from the input data.
- likearray_like, optional
Reference object to allow the creation of arrays which are notNumPy arrays. If an array-like passed in as
like
supportsthe__array_function__
protocol, the result will be definedby it. In this case, it ensures the creation of an array objectcompatible with that passed in via this argument.New in version 1.20.0.
- Returns:
- outndarray
The inputa in Fortran, or column-major, order.
See also
ascontiguousarray
Convert input to a contiguous (C order) array.
asanyarray
Convert input to an ndarray with either row or column-major memory order.
require
Return an ndarray that satisfies requirements.
ndarray.flags
Information about the memory layout of the array.
Examples
Starting with a C-contiguous array:
>>>importnumpyasnp>>>x=np.ones((2,3),order='C')>>>x.flags['C_CONTIGUOUS']True
Calling
asfortranarray
makes a Fortran-contiguous copy:>>>y=np.asfortranarray(x)>>>y.flags['F_CONTIGUOUS']True>>>np.may_share_memory(x,y)False
Now, starting with a Fortran-contiguous array:
>>>x=np.ones((2,3),order='F')>>>x.flags['F_CONTIGUOUS']True
Then, calling
asfortranarray
returns the same object:>>>y=np.asfortranarray(x)>>>xisyTrue
Note: This function returns an array with at least one-dimension (1-d)so it will not preserve 0-d arrays.