Constants#
NumPy includes several constants:
- numpy.e#
Euler’s number, base of natural logarithms, Napier’s constant.
e=2.71828182845904523536028747135266249775724709369995...See Also
exp : Exponential functionlog : Natural logarithm
References
- numpy.euler_gamma#
γ=0.5772156649015328606065120900824024310421...References
- numpy.inf#
IEEE 754 floating point representation of (positive) infinity.
Returns
- yfloat
A floating point representation of positive infinity.
See Also
isinf : Shows which elements are positive or negative infinity
isposinf : Shows which elements are positive infinity
isneginf : Shows which elements are negative infinity
isnan : Shows which elements are Not a Number
isfinite : Shows which elements are finite (not one of Not a Number,positive infinity and negative infinity)
Notes
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic(IEEE 754). This means that Not a Number is not equivalent to infinity.Also that positive infinity is not equivalent to negative infinity. Butinfinity is equivalent to positive infinity.
Examples
>>>importnumpyasnp>>>np.infinf>>>np.array([1])/0.array([inf])
- numpy.nan#
IEEE 754 floating point representation of Not a Number (NaN).
Returns
y : A floating point representation of Not a Number.
See Also
isnan : Shows which elements are Not a Number.
isfinite : Shows which elements are finite (not one ofNot a Number, positive infinity and negative infinity)
Notes
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic(IEEE 754). This means that Not a Number is not equivalent to infinity.
Examples
>>>importnumpyasnp>>>np.nannan>>>np.log(-1)np.float64(nan)>>>np.log([-1,1,2])array([ nan, 0. , 0.69314718])
- numpy.newaxis#
A convenient alias for None, useful for indexing arrays.
Examples
>>>importnumpyasnp>>>np.newaxisisNoneTrue>>>x=np.arange(3)>>>xarray([0, 1, 2])>>>x[:,np.newaxis]array([[0],[1],[2]])>>>x[:,np.newaxis,np.newaxis]array([[[0]],[[1]],[[2]]])>>>x[:,np.newaxis]*xarray([[0, 0, 0], [0, 1, 2], [0, 2, 4]])
Outer product, same asouter(x,y):
>>>y=np.arange(3,6)>>>x[:,np.newaxis]*yarray([[ 0, 0, 0], [ 3, 4, 5], [ 6, 8, 10]])
x[np.newaxis,:] is equivalent tox[np.newaxis] andx[None]:
>>>x[np.newaxis,:].shape(1, 3)>>>x[np.newaxis].shape(1, 3)>>>x[None].shape(1, 3)>>>x[:,np.newaxis].shape(3, 1)
- numpy.pi#
pi=3.1415926535897932384626433...References