numpy.outer#
- numpy.outer(a,b,out=None)[source]#
Compute the outer product of two vectors.
Given two vectorsa andb of length
M
andN
, respectively,the outer product[1] is:[[a_0*b_0a_0*b_1...a_0*b_{N-1}][a_1*b_0.[....[a_{M-1}*b_0a_{M-1}*b_{N-1}]]
- Parameters:
- a(M,) array_like
First input vector. Input is flattened ifnot already 1-dimensional.
- b(N,) array_like
Second input vector. Input is flattened ifnot already 1-dimensional.
- out(M, N) ndarray, optional
A location where the result is stored
- Returns:
- out(M, N) ndarray
out[i,j]=a[i]*b[j]
See also
inner
einsum
einsum('i,j->ij',a.ravel(),b.ravel())
is the equivalent.ufunc.outer
A generalization to dimensions other than 1D and other operations.
np.multiply.outer(a.ravel(),b.ravel())
is the equivalent.linalg.outer
An Array API compatible variation of
np.outer
, which accepts 1-dimensional inputs only.tensordot
np.tensordot(a.ravel(),b.ravel(),axes=((),()))
is the equivalent.
References
[1]G. H. Golub and C. F. Van Loan,Matrix Computations, 3rded., Baltimore, MD, Johns Hopkins University Press, 1996,pg. 8.
Examples
Make a (very coarse) grid for computing a Mandelbrot set:
>>>importnumpyasnp>>>rl=np.outer(np.ones((5,)),np.linspace(-2,2,5))>>>rlarray([[-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.]])>>>im=np.outer(1j*np.linspace(2,-2,5),np.ones((5,)))>>>imarray([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j], [0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j], [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j], [0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])>>>grid=rl+im>>>gridarray([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j], [-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j], [-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j], [-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j], [-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])
An example using a “vector” of letters:
>>>x=np.array(['a','b','c'],dtype=object)>>>np.outer(x,[1,2,3])array([['a', 'aa', 'aaa'], ['b', 'bb', 'bbb'], ['c', 'cc', 'ccc']], dtype=object)