numpy.empty#
- numpy.empty(shape,dtype=float,order='C',*,device=None,like=None)#
Return a new array of given shape and type, without initializing entries.
- Parameters:
- shapeint or tuple of int
Shape of the empty array, e.g.,
(2,3)
or2
.- dtypedata-type, optional
Desired output data-type for the array, e.g,
numpy.int8
. Default isnumpy.float64
.- order{‘C’, ‘F’}, optional, default: ‘C’
Whether to store multi-dimensional data in row-major(C-style) or column-major (Fortran-style) order inmemory.
- devicestr, optional
The device on which to place the created array. Default:
None
.For Array-API interoperability only, so must be"cpu"
if passed.New in version 2.0.0.
- likearray_like, optional
Reference object to allow the creation of arrays which are notNumPy arrays. If an array-like passed in as
like
supportsthe__array_function__
protocol, the result will be definedby it. In this case, it ensures the creation of an array objectcompatible with that passed in via this argument.New in version 1.20.0.
- Returns:
- outndarray
Array of uninitialized (arbitrary) data of the given shape, dtype, andorder. Object arrays will be initialized to None.
See also
empty_like
Return an empty array with shape and type of input.
ones
Return a new array setting values to one.
zeros
Return a new array setting values to zero.
full
Return a new array of given shape filled with value.
Notes
Unlike other array creation functions (e.g.
zeros
,ones
,full
),empty
does not initialize the values of the array, and may therefore bemarginally faster. However, the values stored in the newly allocated arrayare arbitrary. For reproducible behavior, be sure to set each element ofthe array before reading.Examples
>>>importnumpyasnp>>>np.empty([2,2])array([[ -9.74499359e+001, 6.69583040e-309], [ 2.13182611e-314, 3.06959433e-309]]) #uninitialized
>>>np.empty([2,2],dtype=int)array([[-1073741821, -1067949133], [ 496041986, 19249760]]) #uninitialized