Nøyaktighet: Denne artikkelensnøyaktighet er omstridt. Opplysningene i artikkelen bør sjekkes mot kilder.
Atomreaktor er en innretning hvor enkjernefysisk reaksjon foregår under kontrollerte forhold. I forbindelse med strømproduksjon er det til dags dato kun snakk omspaltbart materiale som undergår kontrollertkjernespaltning (fisjon). Reaktorer hvor den motsatte prosessen, kjernesammensmelting eller fusjon, finner sted er under utvikling, men disse returnerer for øyeblikket mindre energi enn man tilfører dem. Spaltbart materiale kan væreanriketuran, naturlig uran, ellerplutonium. Det knytter seg forhåpninger til bruk avthorium i atomreaktorer, men dette er foreløpig ikke blitt realisert. De aller fleste atomreaktorer drives med lavanriket uran, der ca. 3% av uranet i brenselet utgjøres avisotopen235U. Formålet med en atomreaktor er som regel å produsere varmeenergi som igjen omdannes til elektrisk energi i et system der varmen brukes til å koke vann, og dampen ledes gjennomturbiner koblet tilgeneratorer. Atomreaktorer brukes også til å produsere plutonium til bruk iatomvåpen. Det finnes idag i overkant av 400 operative, strømproduserende reaktorer i verden.
Det underliggende prinsippet for både atomvåpen og atomreaktorer er kjernespaltning. Enkelte tungeradioaktive grunnstoffer har isotoper der atomkjernen kan brytes ned ved at den deler seg og gir opphav til to nye atomer (spaltningsprodukter), i tillegg til noennøytroner (som regel 2-3) med høy energi. Dette skjer svært sjeldent spontant, men foruranisotopene233U,235U og plutoniumisotopen239Pu vil bestråling av atomkjernene med nøytroner med nokså lav energi få en relativt stor andel av de bestrålte atomkjernene til å spaltes. Kjernespaltningen frigjør store mengder energi som omdannes til varmeenergi, og det er denne energien som brukes i etatomkraftverk. Ved å utforme brenselselementer og reaktor på en slik måte at de høyenergetiske nøytronene som dannes ved kjernespaltningen får redusert sin energi kan man oppnå en kjedereaksjon. For å redusere energien til nøytronene bruker manmoderatorer. Stoffer med lav atomvekt, f.eks.vann,tungtvann oggrafitt er gode og mye brukte moderatorer. Det finnes også reaktorer der høyenergetiske nøytroner blir brukt.
For at en kjedereaksjon skal komme i stand må hver kjernespaltning gi opphav til minst det antallet nøytroner som er nødvendig for å skape en ny kjernespaltning. Dersom det produseres flere nøytroner enn dette, kan kjedereaksjonen løpe løpsk, noe som kan føre til enkjernefysisk nedsmelting, eller i verste fall en kjernefysisk eksplosjon. For å kontrollere kjedereaksjonen, kan overskuddet av nøytroner fanges opp av regulerbare reaktorkomponenter,kontrollstaver, som kan føres inn og ut av reaktorkjernen og dermed regulere nøytronfluksen. Kontrollstavene er laget av stoffer med god evne til å ta opp nøytroner, f.eks.kadmium.
Atomreaktorer kan klassifiseres på bakgrunn av bl.a. konstruksjon, reaksjonstype, moderatorstoff, kjølemiddel og formål. Under følger en liste over noen reaktortyper klassifisert etter konstruksjon. I tillegg til disse finnes det bl.a. enkelte reaktorer, såkalteformeringsreaktorer, som er i stand til å produsere mer spaltbart materiale enn det som kreves for å drive dem, hovedsakelig ved at238U, som utgjør hoveddelen av uranet omdannes til239Pu ved at238U tar opp et nøytron og omdannes til239U, som i sin tur nesten umiddelbart henfaller til239Pu ved dobbeltbetahenfall. Det finnes også reaktorer som bruker flytende metall, f.eks.natrium og flytende salter som kjølemiddel. Disse drives ved en langt høyeretemperatur enn alminnelige reaktorer.
Radioisotopgeneratorer produserer energi fra varmen som frigjøres vedradioaktiv nedbryting. Noen radioisotope termoelektriske generatorer har blitt opprettet for å driveromsonder (for eksempelCassini-Huygens), noenfyrtårn i det tidligere Sovjetunionen, og enkeltepacemakere. Varmeeffekten fra disse generatorene avtar med tiden; varmen konverteres til elektrisitet ved å utnytte den termoelektriske effekt.
Fisjonsreaktorer produserer varme gjennom en kontrollert kjernefysisk kjedereaksjon i enkritisk masse av spaltbart materiale. Alle dagens kjernekraftverk er kritiske fisjonsreaktorer, som er fokus for denne artikkelen. Utgangseffekten av en fisjonsreaktor kan kontrolleres. Det finnes flere undergrupper av kritiske fisjonsreaktorer, som kan klassifiseres som Generasjon I,Generasjon II ogGenerasjon III. Alle reaktorer vil bli sammenlignet med trykkvannsreaktor (PWR), da det er standard moderne reaktor design.
Trykkvannsreaktor (PWR – Pressurized Water Reactor) utgjør et flertall av alle vestlige kjernekraftverk og er én av to typer lettvannsreaktorer (LWR), den andre typen er kokevannsreaktor (BWR). I en trykkvannsreaktor blir den primære kjølevæsken (overopphetet vann) pumpet under høyt trykk til reaktorkjernen, og det oppvarmede vannet overførertermisk energi til en dampgenerator. I motsetning til kokevannsreaktor, hindrer trykket i den primære kjølevæskesløyfen vannet i å koke i reaktoren (Leidenfrost-effekt). Trykkvannsreaktorer ble opprinnelig laget for å betjeneatomubåter med elektrisitet og ble brukt i den opprinnelige utformingen av det første kommersiellekjernekraftverket ved Shippingport. Reaktoren tilhører kategorien generasjon II reaktor. VVER er det russiske begrepet for den russisk-designede trykkvannsreaktoren.
Kjernefysisk brensel i reaktorbeholderen blir aktivert i enfisjonskjedereaksjon, som produserer varme, og varmer vannet i den primære kjølevæskesløyfen ved varmeledning gjennom drivstoffkappen. Den varme primære kjølevæsken pumpes til envarmeveksler, kaltdampgenerator, der varmen overføres gjennom et sett med rør til en sekundær kjølevæske under lavere trykk, som fordamper til trykksatt damp. Overføringen av varme gjøres uten å blande to væsker, som er ønskelig fordi den primære kjølevæsken kan bliradioaktiv.
Kokvannsreaktoren (BWR – Boiling Water Reactor) har også svært stor utbredelse på verdensbasis. Også denne reaktoren blir både kjølt og moderert av lettvann. Slik navnet kan tyde på, utgjøre kjølemiddelet her av vann som koker. Dampen ledes til turbinene før den kondenserer og ledes tilbake til reaktortanken.
RBMK er en forkortelse forrussiskReaktor Bolschoj Moshnosti Kanalnij (Russisk: Реактор Большой Мощности Канальный) som betyr «reaktor med høy effekt av kanaltype», og beskriver en klasse forgrafittmoderert kjernekraftreaktor, som ble bygget iSovjetunionen, for bruk ikjernekraftverk til å produsere kjernekraft fraatombrensel. Denne reaktortypen stod iTsjernobyl kjernekraftverk daulykken oppstod26. april1986, og per2009, finnes det minst 12 stykker av denne typen som er i drift iRussland ogLitauen.[1] Det finnes imidlertid ingen planer om å bygge nye reaktorer av denne typen. RBMKs teknologi ble utviklet på1950-tallet, og denne teknologien anses i dag som utdatert. I tillegg er der et internasjonalt press for å få stengt ned de gjenværende reaktorene av denne typen. RBMK var en kulminasjon av det sovjetiske programmet for å produsere vannkjølte kraftreaktorer basert på deres grafittmodererte plutoniumproduksjon fra militære reaktorer. Den første av disse, AM-1 («Атом Мирный», russisk for«Atom Mirny»,«fredeligatom») produserte 5MW med elektrisitet (30 MWtermisk) og leverte kraft tilObninsk fra1954 til1959.
Ved å bruke lettvann for kjøling oggrafitt sommoderator, er det mulig å bruke naturliguran som brensel. Derfor kan en stor strømreaktor bygges uten at det kreves deling avisotoper, somanriket uran ellertungtvann. Reaktoren er konstruert slik at bytte av brensel kan skje mens reaktoren er aktiv. Dette gjør reaktoren til et attraktivt alternativ for fattige land som vil produsereatomvåpen, ettersom utvinning av plutonium fra reaktoren kan skje løpende, slik at det ikke er nødvendig med et stort antall reaktorer.
Reaktoren er bygget i 3 størrelser, hvor den største finnes vedIgnalina kjernekraftverk iLitauen. Disse ble vurdert til 1 500 MW hver. Den minste er iObninsk utenforMoskva. Reaktoren er konstruert av grafittblokker og en grafittsylinder med en diameter på ca. 11,8 meter. I denne er det boret mellom 1661 og 1693 kanaler til brenselselementer. Sylinderen er ca. 7 meter høy og omgitt av en tynn stålbeholder til å sikre mot utsiving av luft fra reaktorkjernen. I alle kanalene er det trykkrør med hvert brenselselement bestående av to ledd i forlengelse, hver med 18 brenselsstaver. Brenselstavene består av metallrør som fylles med pellets av uran i keramisk form. Brensel er uran anriket til 2%235U. En reaktor som ligner på RBMK er den kanadiske CANDU-reaktoren.
Reaktor på høytrykksvann og finnes i tre generasjoner. Russlands første 440/230 ble utviklet på 60-tallet og er av internasjonale eksperter regnet som den farligste reaktortypen i drift. Neste generasjon 440/213 ble satt i drift tidlig på 80-tallet, og den siste generasjonen 1000 ble utviklet på slutten av 80-tallet. Ingen av reaktorene møter vestlige sikkerhetsstandarder. De to første reaktorene hadde ingen spesielle former for sikkerhet og ble levert med dårlig kjølesystem.
Dette er enRussisk type reaktor som ligner trykkvannsreaktorer.
CANDU-reaktoren er encanadisk-oppfunnet, trykk tungtvannsreaktor, utviklet sent på1950- og1960-tallet etter et samarbeid mellom Atomic Energy of Canada Limited (AECL), Hydro-Electric Power Commission of Ontario (omdøpt Ontario Hydro i1974, og siden1999 kjent som Ontario Power Generation), Canadian General Electric (nå kjent som GE Canada), samt flere private næringslivsdeltakere. Forkortelsen «CANDU», etregistrert varemerke for Atomic Energy of Canada Limited, står for «Canada Deuterium Uranium». Dette er en referanse til sindideuteriumoksid (tungtvann) moderator og bruken av uran som brensel (opprinnelig, naturlig uran). Alle nåværende kraftreaktorer i Canada er av typen CANDU.
Fisjonsreaksjoner i reaktorkjernen varmer opp en væske, i dette tilfellet tungtvann. Denne kjølevæsken holdes under høyt trykk for å heve kokepunktet og unngå betydelige dampdannelse i kjernen. Det varme tungtvannet generert i denneprimære kjøleloopen går inn i envarmeveksler, og varmer lettvann isekundære kjølelooper med mindre trykk. Dette vannet blir til damp og driver en tradisjonellturbin med en elektriskgenerator knyttet til den. Eventuelle overskytendevarmeenergi i dampen, etter at den har strømmet gjennom turbinen, blir sluppet ut i naturen på en rekke måter, mest typisk i en stor mengde kaldt vann, for eksempel en innsjø, elv eller hav. Varmeenergien kan også fjernes ved at man benytter etkjøletårn, men de unngås når det er mulig fordi de reduserer anleggets effektivitet.
En CANDU-drivstofforsamling består av en rekke rør som inneholderkeramiske pelleter med drivstoff, sammensatt i en sylinder som passer innenfor drivstoffkanalen i reaktoren. I eldre design hadde forsamlingen 28 eller 37 drivstoffrør, hver med en lengde på en halv meter, med 12 slike forsamlinger liggende ende til ende i en drivstoffkanal. Den relativt nyeCANFLEX har 43 rør, med to størrelser på pelletene. Det er ca. 10 cm i diameter, 0,5 m lang og veier ca. 20 kg, og erstatter bunten med 37 rør. Den er designet spesielt for å øke drivstoffytelsen ved å utnytte to forskjellige pelletdiameter.
En rekke lettvannsavdelinger kaltflytende sonekontrollører, hjelper til med å kontrollere hastighet på fisjonen. Deflytende sonekontrollørene absorberer overflødigenøytroner og reduserer hastigheten i fisjonsreaksjonen, i sine regioner av reaktorkjernen. CANDU-reaktorer har installert to uavhengige, hurtigvirkende systemer for nedstenging. Utkoblingsstaver penetrer reaktorkjernen vertikalt og lavere inn i kjernen i tilfelle en feil i sikkerhetssystemet. Et sekundært sikkerhetssystem innebærer innsprøyting av engadolinium-nitratløsning under høyt trykk, direkte til lavtrykks-moderator.
En brenselstav på 4 meter vil romme ca. 200 pellets. En ferdig pellet på 15 gram trenger ca. 78 gram natur-uran, eller opptil 200 kilo malm. Ett tonn malm vil gi 200 gram til 2 kilo natur-uran. Malmen blir blandet med svovelsyre, for å danne gult pulver (yellow-cake). Ved rike malmforekomster kan en utvinne over 100 kilo uran pr tonn malm. Noe som gir mindre avfall.[trenger referanse]
En pellet produserer opptil 110 millioner becquerel, 1 kilo lav og medium- radioaktivt avfall, og 15 gram høyradioaktivt avfall. Samtidig gir det 0,15 gram plutonium.
En pellet med235U kan produsere like mye energi som 1 tonnkull. Dette tilsvarer også tre tønner olje eller to tonn ved som brensel.