Agnes Tapley bruker einsekstant om bord i barken Saint James på 1800-talet.
Navigasjon (frålatinnavis, 'farkost') er kunsta å navigera, det vil seia å bestemmaposisjonen,kursen ogfarten og planleggaruta til eifargreie i fart. Til navigasjon trengst det kunnskap om metodar for å fastsetje posisjon, omkart og referansesystem, om tekniske hjelpemiddel somkompass, peileutstyr,logg,merkesystem og om lokale tilhøve der seglasen går somtidevatn og straum. Navigatørar innan kystnavigasjon, navigasjon på opent hav og flynavigasjon nyttar nokre felles kunnskapar, men er òg spesialiserte for sin disiplin.
Framhaldande utrekning av posisjon er den vektigaste føresetnaden for all navigasjon. Posisjonen er skipet sin plass på havoverflata, gjeven ibreidde, latitude, og ilengde, longitude. Ut frå dei aktuelle omstenda kan navigatøren nytte ulike verktøy og metodar for å avgjere posisjonen.
Om navigatøren har visuell kontakt medfyr eller andre lyssignal,seglmerke ellerlandmerke kan han gjere bruk av tradisjonell, terrestrisk navigasjon. Slik navigasjon byggjer på observasjon av eitt eller fleire objekt og med hjelp frå det å finne posisjonen ved å samanstille stadlinjene ein får. Les òg omorientering. Nokre sentrale omgrep om metodar i terrestrisk navigasjon:
Det geometriske omgrepet terrestriskstadlinje er òg kalla posisjonslinje og peilingslinje. Linja representerer moglege posisjonar, ho er felles for alle punkt som oppfyller same geometriske vilkår. To eller fleire linjer avgjer ein posisjon nøyaktig.
Eit døme på å finne ei stadlinje er om navigatøren peilar eit fyr i 45 grader til nullretninga, medkompasspeiling i forhold til magnetisk nord, så kan han rite ei stadlinje på kartet med hjelp av eintransportør. På kartet er dette linja i 45 grader mot ein avmeridianane gjennom posisjonen for fyret som vert observert. Ein veit at posisjonen til observatøren ligg ein plass på denne stadlinja.
Ved krysspeiling peilar navigatøren vinkelen til to eller fleire faste referansepunkt og teiknar dei respektive stadlinjene påsjøkartet. Om peilingane er rett utførte, og det er tatt omsyn tilmisvising ogdeviasjon, så vil observatøren vere i skjeringspunktet for stadlinjene.
Om skjeringspunktet skal bli pålitande, bør vinkelen mellom stadlinjene vere relativt stor, helst 45-120°. Ein får stadfesta to målingar ved å peile mot ein tredje posisjon. Om ein av dei første peilingane var feil vil ikkje ei korrekt stadlinje gjennom den tredje posisjonen treffe skjeringspunktet for dei to første, men om dei to første var korrekte vil det den tredje peilinga stadfeste dette. Om ein eller fleire av tre peilingane er unøyaktige vil stadlinjene danne eintrekant. Jo større trekant, jo mindre sikre er peilingane. Er det ikkje mogleg å gjere om peilingane, kan ein approksimere posisjonen til senteret av trekanten.
Overeittlys og overeittmerke er sjømerke med eller utan lys som er plassert parvis med ei viss avstand slik at dei dannarovereittlinjer til nytte i navigasjon. Om navigatøren observerer to merkeovereitt veit han at han ligg ein plass på denne overeittlinja. Når eit merke er plassert i noko større høgd enn det andre hjelper det til å observere overrett. Dei to figurane til høgre illustrerer overeitt med hjelp av to merke, eit over det andre. Langs norskekysten finn ein somme stadar overeittlys (overeittfyr) i ulik høgde på land for å hjelpe til innsegling gjennom tronge innlaup tilhamner.
Eksempel på ei naturleg overeittlinje ellermédlinje er eit fyr på linje med ein karakteristisk holme, eller når ein odde ligg på linje mot eit sikkert referansepunkt lengre bak. To kryssande overeittlinjer dannar eitméd som er ein sikkert posisjon.
Overeittlinjer er nyttige som stadlinjer i navigasjon fordi navigatøren ikkje treng å peile retninga med kompass. Navigasjon etter overeittlinjer vil ha som føresetnad at det er den rette linja som vert observert, det vil seie at navigatøren må vite omtrentleg posisjon før han tar ut linja, til dømes ved at han er kjent i området han navigerer.
Gjennom allmennkunnskapar om trekantar ogtrigonometri kan ein fastsetje posisjonen sjølv om ein berre observerer eit objekt med kjent posisjon.
Eit døme på ein slik metode er å nytte ut eigenskapar ved likebeinte, rettvinkla trekantar. Om ein måler opp den einekateten i ein rettvinkla trekant medhypotenusvinkel på 45° veit vi at den andre kateten er like lang. I denne metoden lèt vi den eine kateten vere distansen vi seglar på kurs langs ei rett linje mellom to målepunkt, medan den andre kateten er avstanden til objektet som vi peilar mot.
Peil objektet nøyaktig når det ligg 45° i forhold til kursen, les avloggen. Noter resultatet av peilinga mot objektet.
Hald fram på kursen til objektet ligg i 90° i forhold til kursen, les av loggen og noter peilinga.
Rekn ut utsegla distanse mellom målepunkta.
Legg ut ei stadlinje på kartet for den første avlesinga gjennom objektet, etter det ei stadlinje for den andre avlesinga.
Med ein transportør, parallellforskyv kurslinja for seglasen slik at avstanden mellom dei to stadlinjene svarar til den utsegla distansen. Posisjonen er no gjeven på kartet.
Metoden er ikkje mykje presis og spesielt kan straum påverke resultatet. Navigatøren kan doble vinkelen i mindre steg enn frå 45 til 90° til dømes frå 30 til 60°. Trekanten er då ikkje rettvinkla, men utsegla distanse er framleis lik avstanden til objektet.
Iastronomisk navigasjon nyttar ein observasjon av himmellekamar for å fastlegge posisjonen. Han var kjent avfønikarane ca. 1200-400 f.Kr. På 1500-talet nautisk-astronomiske tabellen. Vitskapsfolk somTycho Brahe,Copernicus,Kepler,Galilei ogNewton gjorde oppdagingar og utvikla kunnskapar om himmellekamar og gjennom det metodar for astronomisk navigasjon med auka grannsemd.
Astronomisk navigasjon byggjer på at ein med hjelp frå einsekstant måler høgda (vinkelen) til ulike himmellekamar og med hjelp av ei rett klokke fårtimevinkelen. Gjennom oppslag i tabellverk for posisjonar kan ein få greie på kor dei aktuelle lekamane er venta. Avvik som vert observert kan reknast om til observert posisjon.
Under 1900-talet vart det utvikla utstyr som gjer det mogleg å måle retningsendringar utan nokon form for kontakt med referansar utanfor skipet eller flymaskinen.
Gyrokompasset var det første eksemplet på eit utstyr av denne typen, det var naudsynt på snøgge fartøy, det gjorde det mogleg å fly utan visuelle referansar. Meir komplettetregleiksnavigasjonssystem for militære flymaskinar byggjer på att ein noggrant måler akselerasjon og vinkelfart for skrovet til ein farkost og frå det reknar ut endringar i retning og i rotasjonar.
Ein kan sjå radarnavigasjon som ein sjølvstendig navigasjonsmetode som gjer høve til å peile stader og gje avstand til stader. På somme plassar finst radarfyr (RACON, kort form avradar responder beacon) som svarar med eitmorsesignal på radiobølgjer om det vert treft av ein radarstråle. Sommekardinalmerke har radarfyr. Det finst òg radarfyr som sender framhaldande signal som kan gje informasjon om kurs på radarskjermen til fartøy som harradar.
Dei første systema for radionavigasjon var reiskap for å avgjere posisjonen ved peilingar. Ved å stille inn mottakarfrekvensen på ein bestemt sendarstasjon og nytte eiantenne med sterk retningsverknad, så kunne ein finne retninga motradiofyret. Dette systemet kunne i til dels erstatte astronomisk navigasjon, framfør alt i kystnære strøk, det fungerte utan omsyn til dagslys og vêr. Med peilingar mot to radiofyr har navigatøren to stadlinjer som gjer posisjonen for fartøyet
Navigasjon med hjelp av langbølgja radiobølgjer var vanleg fram tilGPS-navigasjon tok over. Frå tidleg på1900-talet vart det installert kjeder av radiofyr rundt kring iEuropa, på eit slikt vis at fartøy i alle farvatn fann fleire fyr som kunne peilast og gje stadlinjer til pålitande posisjonsavgjersle.
Hyperbelnavigasjon, som det europeiskeDecca systemet og det USA-amerikanskeLORAN C er ein utvikling mot automatisert radionavigasjon og vart eit dominerande verktøy i fleire tiår. Mottakaren i systemet tolkar faseskilnadar i signal frå ei gruppe radiofyr av ein hovudsendar og tre slavesendarar. Faseskilnadane vert omrekna til hyperbelkurver i spesielle kart og dette gjev stor grannsemd samanlikna med tradisjonell radiopeiling. Men frå og med 1. januar 2016 vart navigasjonssystemet Loran-C avvikla, og utsendinga av navigasjonssignal frå dei fire norske Loran-C-stasjonane Værlandet, Jan Mayen, Bø i Vesterålen og Berlevåg vart avslutta. Satellittbaserte navigasjonssystem, særleg GPS, har vorte dei mest sentrale hjelpemidla for navigasjon, og det var no så godt som ingen som gjorde seg nytte av Loran-C[1].
I prinsippet vil satellittnavigasjon nytte ut målingar av endringar idopplereffekt i signal frå navigasjonssatellittar som passerer i veldefinerte jordbanar. Om mottakaren har kontakt med tre satellittar vil det gje grannsam posisjonsavgjersle i to plan, med signal frå ein fjerde satellitt kan også høgda fastsetjast. Satellittnavigasjon har vore i bruk sidan1960-talet, men dei tidlege systema er no erstatta av GPS-navigasjon eller tilsvarande.