Movatterモバイル変換


[0]ホーム

URL:


Skip to contents

rxode2 Covariates

2025-12-16

Source:vignettes/rxode2-covariates.Rmd
rxode2-covariates.Rmd

Individual Covariates

If there is an individual covariate you wish to solve for you mayspecify it by theiCov dataset:

library(rxode2)
## rxode2 5.0.1.9000 using 2 threads (see ?getRxThreads)##   no cache: create with `rxCreateCache()`
library(units)
## udunits database from /usr/share/xml/udunits/udunits2.xml
library(xgxr)mod3<-function(){ini({TKA<-2.94E-01## Clearance with individualsTCL<-1.86E+01TV2<-4.02E+01TQ<-1.05E+01TV3<-2.97E+02TKin<-1TKout<-1TEC50<-200})model({KA<-TKACL<-TCL*(WT/70)^0.75V2<-TV2Q<-TQV3<-TV3Kin<-TKinKout<-TKoutEC50<-TEC50Tz<-8amp<-0.1C2<-central/V2C3<-peri/V3d/dt(depot)<--KA*depotd/dt(central)<-KA*depot-CL*C2-Q*C2+Q*C3d/dt(peri)<-Q*C2-Q*C3d/dt(eff)<-Kin-Kout*(1-C2/(EC50+C2))*effeff(0)<-1## This specifies that the effect compartment starts at 1.})}ev<-et(amount.units="mg", time.units="hours")%>%et(amt=10000, cmt=1)%>%et(0,48,length.out=100)%>%et(id=1:4)set.seed(10)rxSetSeed(10)## Now use iCov to simulate a 4-id sampler1<-solve(mod3,ev,# Create individual covariate data-frame            iCov=data.frame(id=1:4, WT=rnorm(4,70,10)))
## parameter labels from comments are typically ignored in non-interactive mode
## Need to run with the source intact to parse comments
print(r1)
##── Solved rxode2 object ──##── Parameters ($params): ──##     TKA     TCL     TV2      TQ     TV3    TKin   TKout   TEC50      Tz     amp##   0.294  18.600  40.200  10.500 297.000   1.000   1.000 200.000   8.000   0.100##── Initial Conditions ($inits): ──##   depot central    peri     eff##       0       0       0       1##── First part of data (object): ──### A tibble: 400 × 17##      id  time    KA    CL    V2     Q    V3   Kin  Kout  EC50    C2    C3  depot##<int>[h]<dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>##1     1 0     0.294  18.6  40.2  10.5   297     1     1   200   0   010000##2     1 0.485 0.294  18.6  40.2  10.5   297     1     1   200  27.8 0.2578671.##3     1 0.970 0.294  18.6  40.2  10.5   297     1     1   200  43.7 0.8737519.##4     1 1.45  0.294  18.6  40.2  10.5   297     1     1   200  51.7 1.686520.##5     1 1.94  0.294  18.6  40.2  10.5   297     1     1   200  54.7 2.565654.##6     1 2.42  0.294  18.6  40.2  10.5   297     1     1   200  54.5 3.454903.### ℹ 394 more rows### ℹ 4 more variables: central <dbl>, peri <dbl>, eff <dbl>, WT <dbl>
plot(r1,C2, log="y")
## Warning in ggplot2::scale_y_log10(..., breaks = breaks, minor_breaks =## minor_breaks, :log-10 transformation introduced infinite## values.

Time Varying Covariates

Covariates are easy to specify in rxode2, you can specify them as avariable. Time-varying covariates, like clock time in a circadian rhythmmodel, can also be used. Extending the indirect response model alreadydiscussed, we have:

library(rxode2)library(units)mod4<-mod3%>%model(d/dt(eff)<-Kin-Kout*(1-C2/(EC50+C2))*eff)%>%model(-Kin)%>%model(Kin<-TKin+amp*cos(2*pi*(ctime-Tz)/24), append=C2, cov="ctime")ev<-et(amountUnits="mg", timeUnits="hours")%>%et(amt=10000, cmt=1)%>%et(0,48,length.out=100)## Create data frame of 8 am dosing for the first dose This is done## with base R but it can be done with dplyr or data.tableev$ctime<-(ev$time+set_units(8,hr))%%24ev$WT<-70

Now there is a covariate present in the event dataset, the system canbe solved by combining the dataset and the model:

r1<-solve(mod4,ev, covsInterpolation="linear")print(r1)#>── Solved rxode2 object ──#>── Parameters ($params): ──#>        TKA        TCL        TV2         TQ        TV3      TKout      TEC50#>   0.294000  18.600000  40.200000  10.500000 297.000000   1.000000 200.000000#>       TKin         Tz        amp         pi#>   1.000000   8.000000   0.100000   3.141593#>── Initial Conditions ($inits): ──#>   depot central    peri     eff#>       0       0       0       1#>── First part of data (object): ──#># A tibble: 100 × 17#>    time    KA    CL    V2     Q    V3  Kout  EC50    C2   Kin    C3  depot#>[h]<dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>#>1 0     0.294  18.6  40.2  10.5   297     1   200   0    1.1  010000#>2 0.485 0.294  18.6  40.2  10.5   297     1   200  27.8  1.10 0.2578671.#>3 0.970 0.294  18.6  40.2  10.5   297     1   200  43.7  1.10 0.8747519.#>4 1.45  0.294  18.6  40.2  10.5   297     1   200  51.8  1.09 1.686520.#>5 1.94  0.294  18.6  40.2  10.5   297     1   200  54.8  1.09 2.565654.#>6 2.42  0.294  18.6  40.2  10.5   297     1   200  54.6  1.08 3.454903.#># ℹ 94 more rows#># ℹ 5 more variables: central <dbl>, peri <dbl>, eff <dbl>, ctime [h], WT <dbl>

When solving ODE equations, the solver may sample times outside ofthe data. When this happens, this ODE solver can use linearinterpolation between the covariate values. It is equivalent to R’sapproxfun withmethod="linear".

plot(r1,C2, ylab="Central Concentration")

plot(r1,eff)+ylab("Effect")+xlab("Time")

Note that the linear approximation in this case leads to some kinksin the solved system at 24-hours where the covariate has a linearinterpolation between near 24 and near 0. While linear seems reasonable,cases like clock time make other interpolation methods moreattractive.

In rxode2 the default covariate interpolation is be the lastobservation carried forward (locf), or constantapproximation. This is equivalent to R’sapproxfun withmethod="constant".

r1<-solve(mod4,ev,covsInterpolation="locf")print(r1)#>── Solved rxode2 object ──#>── Parameters ($params): ──#>        TKA        TCL        TV2         TQ        TV3      TKout      TEC50#>   0.294000  18.600000  40.200000  10.500000 297.000000   1.000000 200.000000#>       TKin         Tz        amp         pi#>   1.000000   8.000000   0.100000   3.141593#>── Initial Conditions ($inits): ──#>   depot central    peri     eff#>       0       0       0       1#>── First part of data (object): ──#># A tibble: 100 × 17#>    time    KA    CL    V2     Q    V3  Kout  EC50    C2   Kin    C3  depot#>[h]<dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>#>1 0     0.294  18.6  40.2  10.5   297     1   200   0    1.1  010000#>2 0.485 0.294  18.6  40.2  10.5   297     1   200  27.8  1.10 0.2578671.#>3 0.970 0.294  18.6  40.2  10.5   297     1   200  43.7  1.10 0.8747519.#>4 1.45  0.294  18.6  40.2  10.5   297     1   200  51.8  1.09 1.686520.#>5 1.94  0.294  18.6  40.2  10.5   297     1   200  54.8  1.09 2.565654.#>6 2.42  0.294  18.6  40.2  10.5   297     1   200  54.6  1.08 3.454903.#># ℹ 94 more rows#># ℹ 5 more variables: central <dbl>, peri <dbl>, eff <dbl>, ctime [h], WT <dbl>

which gives the following plots:

plot(r1,C2, ylab="Central Concentration", xlab="Time")

plot(r1,eff, ylab="Effect", xlab="Time")

In this case, the plots seem to be smoother.

You can also use NONMEM’s preferred interpolation style of nextobservation carried backward (NOCB):

r1<-solve(mod4,ev,covsInterpolation="nocb")print(r1)#>── Solved rxode2 object ──#>── Parameters ($params): ──#>        TKA        TCL        TV2         TQ        TV3      TKout      TEC50#>   0.294000  18.600000  40.200000  10.500000 297.000000   1.000000 200.000000#>       TKin         Tz        amp         pi#>   1.000000   8.000000   0.100000   3.141593#>── Initial Conditions ($inits): ──#>   depot central    peri     eff#>       0       0       0       1#>── First part of data (object): ──#># A tibble: 100 × 17#>    time    KA    CL    V2     Q    V3  Kout  EC50    C2   Kin    C3  depot#>[h]<dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>#>1 0     0.294  18.6  40.2  10.5   297     1   200   0    1.1  010000#>2 0.485 0.294  18.6  40.2  10.5   297     1   200  27.8  1.10 0.2578671.#>3 0.970 0.294  18.6  40.2  10.5   297     1   200  43.7  1.10 0.8747519.#>4 1.45  0.294  18.6  40.2  10.5   297     1   200  51.8  1.09 1.686520.#>5 1.94  0.294  18.6  40.2  10.5   297     1   200  54.8  1.09 2.565654.#>6 2.42  0.294  18.6  40.2  10.5   297     1   200  54.6  1.08 3.454903.#># ℹ 94 more rows#># ℹ 5 more variables: central <dbl>, peri <dbl>, eff <dbl>, ctime [h], WT <dbl>

which gives the following plots:

plot(r1,C2, ylab="Central Concentration", xlab="Time")

plot(r1,eff, ylab="Effect", xlab="Time")


[8]ページ先頭

©2009-2025 Movatter.jp