Movatterモバイル変換


[0]ホーム

URL:


ingredients
part of theDrWhy.AI developed by theMI^2 DataLab2.3.0

Changelog

Source:NEWS.md

ingredients 2.3.0

ingredients 2.2.1

  • addedfacet_scales parameter toplot.aggregated_profiles_explainer ('free_x' by default)#138 andplot.ceteris_paribus_explainer ('free_x' or'free_y' by default, depending on plot type)#136

ingredients 2.2.02021-04-10

  • fixes explanations when data has one column#137

ingredients 2.0.12021-02-05

ingredients 2.02020-09-01

  • plot.ceteris_paribus_explainer now by default for categorical variables plots profiles (not lines -prev default- nor bars)
  • ALE plots are now centered around average y_hat#126
  • colors from DrWhy color palette is used for CP#125

ingredients 1.3.12020-07-29

  • defaultsubtitle value inplot.fi changed toNULL fromNA (unification)
  • now in theceteris_paribus function one can specify how grid points shall be calculated, seevariable_splits_type
  • ceteris_paribus and aggregates are now working with missing data, this solves#120
  • plot(ceteris_paribus) change defaultcolor tolabel orids if more than one profile is detected, this solves#123
  • ceteris_paribus has now argumentvariable_splits_with_obs which included values fromnew_observations in thevariable_splits, this solves#124

ingredients 1.3.02020-07-01

  • deprecaten_sample argument infeature_importance (now it’sN)#113
  • plot_profile now handles multilabel models

ingredients 1.2.02020-04-20

  • DALEX is moved to Suggests as in#112
  • plot_categorical_ceteris_paribus can plot bars (again)
  • addbind_plots function

ingredients 1.1.0

  • supportR v4.0 and depend onR v3.5 to comply withDALEX
  • new argumentstitle andsubtitle in several plots

ingredients 1.0.0

  • changedependency todependence#103

ingredients 0.5.2

  • ceteris_paribus profiles are now working for categorical variables
  • show_profiles,show_observations,show_residuals are now working for categorical variables

ingredients 0.5.1

  • synchronisation with changes in DALEX 0.5
  • new argumentdesc_sorting inplot.variable_importance_explainer#94

ingredients 0.5.02019-12-20

  • feature_importance now does15 permutations on each variable by default. Use theB argument to change this number
  • added boxplots toplot.feature_importance andplotD3.feature_importance that showcase the permutation data
  • inaggregate_profiles: preserve_x_ column factor order and sort its values#82

ingredients 0.4.2

  • aggregate_profiles use now gaussian kernel smoothing. Use thespan argument for fine control over this parameter (#79)
  • changevariable_type andvariables arguments usage in theaggregate_profiles,plot.ceteris_paribus andplotD3.ceteris_paribus
  • removevariable_type argument fromplotD3.aggregated_profiles (now the same as inplot.aggregated_profiles)
  • Kasia Pekala is moved as contributor to theDALEXtra asaspect_importance is moved toDALEXtra as well (See v0.3.12 changelog)
  • added Travis-CI for OSX

ingredients 0.4.1

  • fixed rounding problem in the describe function (#76)

ingredients 0.42019-10-27

  • CRAN release

ingredients 0.3.12

  • aspect_importance is moved toDALEXtra (#66)
  • examples are updated in order to reflect changes intitanic_imputed fromDALEX (#65)

ingredients 0.3.11

  • modifiedplot.aspect_importance - it can plot more than single figure
  • modifiedtriplot,plot.aspect_importance andplot_group_variables to add more clarity in plots and allow some parameterization

ingredients 0.3.10

  • addedtriplot function that illustrates hierarchicalaspect_importance() groupings
  • changes inaspect_importance() functions
  • added back the vigniette foraspect_importance()

ingredients 0.3.92019-08-26

  • changeonly_numerical parameter tovariable_type in functions aggregated_profiles(), cluster_profiles(), plot() and others, as requested in#15

ingredients 0.3.8

ingredients 0.3.7

  • aggregated_profiles_conditional andaggregated_profiles_accumulated are rewritten with some code fixes

ingredients 0.3.6

  • a new version oflime is implemented in thelime()/aspect_importance() function.
  • Kasia Pekala and Huber Baniecki are added as contributors.

ingredients 0.3.5

  • new feature#29. Feature importance now takes an argumentB that replicates permutationsB times and calculates average from drop loss.

ingredients 0.3.4

  • plotD3 now supports Ceteris Paribus Profiles.
  • feature_importance now can takevariable_grouping argument that assess importance of group of features
  • fix in ceteris_paribus, now it handles models with just one variable
  • fix#27 for multiple rows

ingredients 0.3.32019-05-01

  • show_profiles andshow_residuals functions extend Ceteris Paribus Plots.
  • show_aggreagated_profiles is renamed toshow_aggregated_profiles
  • centering of ggplot2 title

ingredients 0.3.2

  • added new functionsdescribe() andprint.ceteris_paribus_descriptions() for text based descriptions of Ceteris Paribus explainers
  • plot.ceteris_paribus_explainer works now also for categorical variables. Use theonly_numerical = FALSE to force bars

ingredients 0.3.12019-04-09

  • added references to PM VEE
  • partial_profiles(),accumulated_profiles() andconditional_profiles for variable effects
  • major changes in function names and file names

ingredients 0.3

  • ceteris_paribus_2d extends classical ceteris paribus profiles
  • ceteris_paribus_oscillations calculates oscilations for ceteris paribus profiles
  • fixed examples and file names

ingredients 0.2

  • cluster_profiles helps to identify interactions
  • partial_dependency calculates partial dependency plots
  • aggregate_profiles calculates partial dependency plots and much more

ingredients 0.1

  • port ofmodel_feature_importance andmodel_feature_response fromDALEX toingredients
  • added tests

[8]ページ先頭

©2009-2025 Movatter.jp