Movatterモバイル変換


[0]ホーム

URL:


Skip to contents

mlr3tuning

Package website:release |dev

mlr3tuning is the hyperparameter optimization package of themlr3 ecosystem. It features highly configurable search spaces via theparadox package and finds optimal hyperparameter configurations for any mlr3learner. mlr3tuning works with several optimization algorithms e.g. Random Search, Iterated Racing, Bayesian Optimization (inmlr3mbo) and Hyperband (inmlr3hyperband). Moreover, it canautomatically optimize learners and estimate the performance of optimized models withnested resampling. The package is built on the optimization frameworkbbotk.

Extension packages

mlr3tuning is extended by the following packages.

  • mlr3tuningspaces is a collection of search spaces from scientific articles for commonly used learners.
  • mlr3hyperband adds the Hyperband and Successive Halving algorithm.
  • mlr3mbo adds Bayesian Optimization methods.

Resources

There are several sections about hyperparameter optimization in themlr3book.

Thegallery features a collection of case studies and demos about optimization.

Thecheatsheet summarizes the most important functions of mlr3tuning.

Installation

Install the last release from CRAN:

install.packages("mlr3tuning")

Install the development version from GitHub:

remotes::install_github("mlr-org/mlr3tuning")

Examples

We optimize thecost andgamma hyperparameters of a support vector machine on theSonar data set.

library("mlr3learners")library("mlr3tuning")learner=lrn("classif.svm",  cost=to_tune(1e-5,1e5, logscale=TRUE),  gamma=to_tune(1e-5,1e5, logscale=TRUE),  kernel="radial",  type="C-classification")

We construct a tuning instance with theti() function. The tuning instance describes the tuning problem.

instance=ti(  task=tsk("sonar"),  learner=learner,  resampling=rsmp("cv", folds=3),  measures=msr("classif.ce"),  terminator=trm("none"))instance
## <TuningInstanceBatchSingleCrit>## * State:  Not optimized## * Objective: <ObjectiveTuningBatch:classif.svm_on_sonar>## * Search Space:##       id    class     lower    upper nlevels## 1:  cost ParamDbl -11.51293 11.51293     Inf## 2: gamma ParamDbl -11.51293 11.51293     Inf## * Terminator: <TerminatorNone>

We select a simple grid search as the optimization algorithm.

tuner=tnr("grid_search", resolution=5)tuner
## <TunerBatchGridSearch>: Grid Search## * Parameters: batch_size=1, resolution=5## * Parameter classes: ParamLgl, ParamInt, ParamDbl, ParamFct## * Properties: dependencies, single-crit, multi-crit## * Packages: mlr3tuning, bbotk

To start the tuning, we simply pass the tuning instance to the tuner.

tuner$optimize(instance)
##        cost     gamma learner_param_vals  x_domain classif.ce## 1: 5.756463 -5.756463          <list[4]> <list[2]>  0.1828847

The tuner returns the best hyperparameter configuration and the corresponding measured performance.

The archive contains all evaluated hyperparameter configurations.

as.data.table(instance$archive)[,.(cost,gamma,classif.ce,batch_nr,resample_result)]
##           cost      gamma classif.ce batch_nr  resample_result##  1:  -5.756463   5.756463  0.4663216        1 <ResampleResult>##  2:   5.756463  -5.756463  0.1828847        2 <ResampleResult>##  3:  11.512925   5.756463  0.4663216        3 <ResampleResult>##  4:   5.756463  11.512925  0.4663216        4 <ResampleResult>##  5: -11.512925 -11.512925  0.4663216        5 <ResampleResult>## ---## 21:  -5.756463  -5.756463  0.4663216       21 <ResampleResult>## 22:  11.512925  11.512925  0.4663216       22 <ResampleResult>## 23: -11.512925  11.512925  0.4663216       23 <ResampleResult>## 24:  11.512925  -5.756463  0.1828847       24 <ResampleResult>## 25:   0.000000  -5.756463  0.2402346       25 <ResampleResult>

Themlr3viz package visualizes tuning results.

library(mlr3viz)autoplot(instance, type="surface")

We fit a final model with optimized hyperparameters to make predictions on new data.

learner$param_set$values=instance$result_learner_param_valslearner$train(tsk("sonar"))

Links

License

Citation

Developers

  • Marc Becker
    Maintainer, author
  • Michel Lang
    Author
  • Jakob Richter
    Author
  • Bernd Bischl
    Author
  • Daniel Schalk
    Author

[8]ページ先頭

©2009-2025 Movatter.jp