Agrobacterium

From WikiProjectMed
Jump to navigationJump to search
Genus of bacteria

Agrobacterium
Scientific classificationEdit this classification
Domain:Bacteria
Kingdom:Pseudomonadati
Phylum:Pseudomonadota
Class:Alphaproteobacteria
Order:Hyphomicrobiales
Family:Rhizobiaceae
Genus:Agrobacterium
Conn 1942 (Approved Lists 1980)
Type species
Agrobacterium radiobacter
(Smith and Townsend 1907) Conn 1942 (Approved Lists 1980)
Species
Synonyms[1]
  • PolymonasLieske 1928

Agrobacterium is agenus ofGram-negativebacteria established byH. J. Conn that useshorizontal gene transfer to causetumors in plants.Agrobacterium tumefaciens is the most commonly studiedspecies in this genus.Agrobacterium is well known for its ability to transferDNA between itself and plants, and for this reason it has become an important tool forgenetic engineering.

Nomenclatural history

Leading up to the 1990s, the genusAgrobacterium was used as awastebasket taxon. With the advent of16S sequencing, manyAgrobacterium species (especially the marine species) were reassigned to genera such asAhrensia,Pseudorhodobacter,Ruegeria, andStappia.[2][3] The remainingAgrobacterium species were assigned to three biovars: biovar 1 (Agrobacterium tumefaciens), biovar 2 (Agrobacterium rhizogenes), and biovar 3 (Agrobacterium vitis). In the early 2000s,Agrobacterium was synonymized with the genusRhizobium.[4] This move proved to be controversial.[5][6] The debate was finally resolved when the genusAgrobacterium was reinstated[7] after it was demonstrated that it wasphylogenetically distinct fromRhizobium[8][9] and thatAgrobacterium species were unified by a uniquesynapomorphy: the presence of the protelomerase gene,telA, which causes all members of the genus to have a linearchromid.[10] By this time, however, the threeAgrobacterium biovars had become defunct; biovar 1 remained withAgrobacterium, biovar 2 was renamedRhizobium rhizogenes, and biovar 3 was renamedAllorhizobium vitis.

Plant pathogen

The large growths on these roots aregalls induced byAgrobacterium sp.

Agrobacterium tumefaciens causes crown-gall disease in plants. The disease is characterised by atumour-like growth orgall on the infected plant, often at the junction between the root and the shoot. Tumors are incited by theconjugative transfer of a DNA segment (T-DNA) from the bacterial tumour-inducing (Ti)plasmid. The closely related species,Agrobacterium rhizogenes, induces root tumors, and carries the distinct Ri (root-inducing) plasmid. Although the taxonomy ofAgrobacterium is currently under revision it can be generalised that 3 biovars exist within the genus,Agrobacterium tumefaciens,Agrobacterium rhizogenes, andAgrobacterium vitis. Strains withinAgrobacterium tumefaciens andAgrobacterium rhizogenes are known to be able to harbour either a Ti or Ri-plasmid, whilst strains ofAgrobacterium vitis, generally restricted to grapevines, can harbour a Ti-plasmid. Non-Agrobacterium strains have been isolated from environmental samples which harbour a Ri-plasmid whilst laboratory studies have shown that non-Agrobacterium strains can also harbour a Ti-plasmid. Some environmental strains ofAgrobacterium possess neither a Ti nor Ri-plasmid. These strains are avirulent.[11]

The plasmid T-DNA is integrated semi-randomly into thegenome of the host cell,[12] and the tumor morphology genes on the T-DNA are expressed, causing the formation of a gall. The T-DNA carries genes for the biosynthetic enzymes for the production of unusualamino acids, typicallyoctopine ornopaline. It also carries genes for the biosynthesis of theplant hormones,auxin andcytokinins, and for the biosynthesis ofopines, providing a carbon and nitrogen source for the bacteria that most other micro-organisms can't use, givingAgrobacterium aselective advantage.[13] By altering the hormone balance in the plant cell, the division of those cells cannot be controlled by the plant, and tumors form. The ratio of auxin to cytokinin produced by the tumor genes determines the morphology of the tumor (root-like, disorganized or shoot-like).

In humans

Although generally seen as an infection in plants,Agrobacterium can be responsible foropportunistic infections in humans with weakenedimmune systems,[14][15] but has not been shown to be a primary pathogen in otherwise healthy individuals. One of the earliest associations of human disease caused byAgrobacterium radiobacter was reported by Dr. J. R. Cain in Scotland (1988).[16] A later study suggested thatAgrobacterium attaches to and genetically transforms several types of human cells by integrating its T-DNA into the human cell genome. The study was conducted using cultured human tissue and did not draw any conclusions regarding related biological activity in nature.[17]

Uses in biotechnology

See also:Horizontal gene transfer
See also:Agroinfiltration

The ability ofAgrobacterium to transfergenes toplants and fungi is used inbiotechnology, in particular,genetic engineering forplant improvement. Genomes of plants and fungi can be engineered by use ofAgrobacterium for the delivery of sequences hosted inT-DNA binary vectors. A modified Ti or Ri plasmid can be used. The plasmid is 'disarmed' by deletion of the tumor inducing genes; the only essential parts of the T-DNA are its two small (25 base pair) border repeats, at least one of which is needed for plant transformation.[18][19] The genes to be introduced into the plant are cloned into a plant binary vector that contains the T-DNA region of the disarmedplasmid, together with a selectable marker (such asantibiotic resistance) to enable selection for plants that have been successfully transformed. Plants are grown on media containing antibiotic following transformation, and those that do not have the T-DNA integrated into their genome will die. An alternative method isagroinfiltration.[20][21]

Plant (S. chacoense) transformed usingAgrobacterium. Transformed cells start forming calluses on the side of the leaf pieces

Transformation withAgrobacterium can be achieved in multiple ways.Protoplasts or alternatively leaf-discs can be incubated with theAgrobacterium and whole plants regenerated usingplant tissue culture. Inagroinfiltration theAgrobacterium may be injected directly into the leaf tissue of a plant. This method transforms only cells in immediate contact with the bacteria, and results in transient expression of plasmid DNA.[22]

Agroinfiltration is commonly used to transform tobacco (Nicotiana). A common transformation protocol forArabidopsis is the floral dip method:[23] Aninflorescence is dipped in a suspension ofAgrobacterium, and the bacterium transforms thegermline cells that make the femalegametes. Theseeds can then be screened for antibiotic resistance (or another marker of interest). Plants that have not integrated the plasmid DNA will die when exposed to the antibiotic.[20]

Agrobacterium is listed as being the vector of genetic material that was transferred to these USA GMOs:[24]

Thetransformation of fungi usingAgrobacterium is used primarily for research purposes,[25][26] and follows similar approaches as for plant transformation. TheTi plasmid system is modified to include DNA elements to select for transformed fungal strains, after co-incubation ofAgrobacterium strains carrying these plasmids with fungal species.

Genomics

TheAgrobacterium genome consists of three parts: a circularchromosome, a linear chromosome/chromid, and (in some species) aTi plasmid.[27]

The sequencing of thegenomes of several species ofAgrobacterium has permitted the study of the evolutionary history of these organisms and has provided information on thegenes and systems involved in pathogenesis, biological control andsymbiosis. One important finding is the possibility thatchromosomes are evolving fromplasmids in many of these bacteria. Another discovery is that the diverse chromosomal structures in this group appear to be capable of supporting both symbiotic and pathogenic lifestyles. The availability of the genome sequences ofAgrobacterium species will continue to increase, resulting in substantial insights into the function and evolutionary history of this group of plant-associated microbes.[28]

History

Marc Van Montagu andJozef Schell at theUniversity of Ghent (Belgium) discovered the gene transfer mechanism betweenAgrobacterium and plants, which resulted in the development of methods to alterAgrobacterium into an efficient delivery system for gene engineering in plants.[18][19] A team of researchers led byMary-Dell Chilton were the first to demonstrate that the virulence genes could be removed without adversely affecting the ability ofAgrobacterium to insert its own DNA into the plant genome (1983).[29]

See also

References

  1. ^Buchanan RE (1965)."Proposal for rejection of the generic namePolymonas Lieske 1928".International Bulletin of Bacteriological Nomenclature and Taxonomy.15 (1):43–44.doi:10.1099/00207713-15-1-43.
  2. ^Uchino Y, Yokota A, Sugiyama J (August 1997)."Phylogenetic position of the marine subdivision ofAgrobacterium species based on 16S rRNA sequence analysis".The Journal of General and Applied Microbiology.43 (4):243–247.doi:10.2323/jgam.43.243.PMID 12501326.
  3. ^Uchino Y, Hirata A, Yokota A, Sugiyama J (June 1998)."Reclassification of marineAgrobacterium species: Proposals ofStappia stellulata gen. nov., comb. nov.,Stappia aggregata sp. nov., nom. rev.,Ruegeria atlantica gen. nov., comb. nov.,Ruegeria gelatinovora comb. nov.,Ruegeria algicola comb. nov., andAhrensia kieliense gen. nov., sp. nov., nom. rev".The Journal of General and Applied Microbiology.44 (3):201–210.doi:10.2323/jgam.44.201.PMID 12501429.
  4. ^Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H (January 2001)."A revision ofRhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species ofAgrobacterium Conn 1942 andAllorhizobium undicola de Lajudieet al. 1998 as new combinations:Rhizobium radiobacter,R. rhizogenes,R. rubi,R. undicola andR. vitis".International Journal of Systematic and Evolutionary Microbiology.51 (Pt 1):89–103.doi:10.1099/00207713-51-1-89.PMID 11211278.
  5. ^Farrand SK, van Berkum PB, Oger P (September 2003)."Agrobacterium is a definable genus of the family Rhizobiaceae".International Journal of Systematic and Evolutionary Microbiology.53 (Pt 5):1681–1687.doi:10.1099/ijs.0.02445-0.PMID 13130068.
  6. ^Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H (September 2003)."Classification and nomenclature ofAgrobacterium andRhizobium".International Journal of Systematic and Evolutionary Microbiology.53 (Pt 5):1689–1695.doi:10.1099/ijs.0.02762-0.PMID 13130069.
  7. ^Flores-Félix JD, Menéndez E, Peix A, García-Fraile P, Velázquez E (2020). "History and current taxonomic status of genusAgrobacterium".Syst Appl Microbiol.43 (1): 126046.doi:10.1016/j.syapm.2019.126046.hdl:10174/28328.PMID 31818496.S2CID 209164436.
  8. ^Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C, Vial L, Paulin L, de Lajudie P, Lindström K (2014). "Phylogeny of theRhizobium-Allorhizobium-Agrobacterium clade supports the delineation ofNeorhizobium gen. nov".Syst Appl Microbiol.37 (3):208–215.doi:10.1016/j.syapm.2013.12.007.PMID 24581678.
  9. ^Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K (2015). "Revised phylogeny ofRhizobiaceae: Proposal of the delineation ofPararhizobium gen. nov., and 13 new species combinations".Syst Appl Microbiol.38 (2):84–90.doi:10.1016/j.syapm.2014.12.003.PMID 25595870.
  10. ^Ramírez-Bahena MH, Vial L, Lassalle F, Diel B, Chapulliot D, Daubin V, Nesme X, Muller D (2014). "Single acquisition of protelomerase gave rise to speciation of a large and diverse clade within theAgrobacterium/Rhizobium supercluster characterized by the presence of a linear chromid".Mol Phylogenet Evol.73:202–207.doi:10.1016/j.ympev.2014.01.005.PMID 24440816.
  11. ^Sawada H, Ieki H, Oyaizu H, Matsumoto S (October 1993)."Proposal for rejection ofAgrobacterium tumefaciens and revised descriptions for the genusAgrobacterium and forAgrobacterium radiobacter andAgrobacterium rhizogenes".International Journal of Systematic Bacteriology.43 (4):694–702.doi:10.1099/00207713-43-4-694.PMID 8240952.
  12. ^Francis KE, Spiker S (February 2005)."Identification ofArabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations".The Plant Journal.41 (3):464–77.doi:10.1111/j.1365-313X.2004.02312.x.PMID 15659104.
  13. ^Pitzschke A, Hirt H (March 2010)."New insights into an old story:Agrobacterium-induced tumour formation in plants by plant transformation".The EMBO Journal.29 (6):1021–32.doi:10.1038/emboj.2010.8.PMC 2845280.PMID 20150897.
  14. ^Hulse M, Johnson S, Ferrieri P (January 1993). "Agrobacterium infections in humans: experience at one hospital and review".Clinical Infectious Diseases.16 (1):112–7.doi:10.1093/clinids/16.1.112.PMID 8448285.
  15. ^Dunne WM, Tillman J, Murray JC (September 1993)."Recovery of a strain ofAgrobacterium radiobacter with a mucoid phenotype from an immunocompromised child with bacteremia".Journal of Clinical Microbiology.31 (9):2541–3.doi:10.1128/JCM.31.9.2541-2543.1993.PMC 265809.PMID 8408587.
  16. ^Cain JR (March 1988). "A case of septicaemia caused byAgrobacterium radiobacter".The Journal of Infection.16 (2):205–6.doi:10.1016/s0163-4453(88)94272-7.PMID 3351321.
  17. ^Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V (February 2001)."Genetic transformation of HeLa cells byAgrobacterium".Proceedings of the National Academy of Sciences of the United States of America.98 (4):1871–6.Bibcode:2001PNAS...98.1871K.doi:10.1073/pnas.041327598.JSTOR 3054968.PMC 29349.PMID 11172043.
  18. ^abSchell J, Van Montagu M (1977). "The Ti-Plasmid of Agrobacterium Tumefaciens, A Natural Vector for the Introduction of NIF Genes in Plants?". In Hollaender A, Burris RH, Day PR, Hardy RW, Helinski DR, Lamborg MR, Owens L, Valentine RC (eds.).Genetic Engineering for Nitrogen Fixation. Basic Life Sciences. Vol. 9. pp. 159–79.doi:10.1007/978-1-4684-0880-5_12.ISBN 978-1-4684-0882-9.PMID 336023.
  19. ^abJoos H, Timmerman B, Montagu MV, Schell J (1983)."Genetic analysis of transfer and stabilization ofAgrobacterium DNA in plant cells".The EMBO Journal.2 (12):2151–60.doi:10.1002/j.1460-2075.1983.tb01716.x.PMC 555427.PMID 16453483.
  20. ^abThomson JA."Genetic Engineering of Plants"(PDF).Biotechnology.3.Archived(PDF) from the original on 17 January 2017. Retrieved17 July 2016.
  21. ^Leuzinger K, Dent M, Hurtado J, Stahnke J, Lai H, Zhou X, Chen Q (July 2013)."Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins".Journal of Visualized Experiments.77 (77).doi:10.3791/50521.PMC 3846102.PMID 23913006.
  22. ^Shamloul M, Trusa J, Mett V, Yusibov V (April 2014)."Optimization and utilization ofAgrobacterium-mediated transient protein production inNicotiana".Journal of Visualized Experiments (86).doi:10.3791/51204.PMC 4174718.PMID 24796351.
  23. ^Clough SJ, Bent AF (December 1998). "Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana".The Plant Journal.16 (6):735–43.doi:10.1046/j.1365-313x.1998.00343.x.PMID 10069079.S2CID 410286.
  24. ^The FDA List of Completed Consultations on Bioengineered FoodsArchived May 13, 2008, at theWayback Machine
  25. ^Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF (July 2005). "Agrobacterium-mediated transformation as a tool for functional genomics in fungi".Current Genetics.48 (1):1–17.doi:10.1007/s00294-005-0578-0.hdl:1887/3763935.PMID 15889258.S2CID 23959400.
  26. ^Idnurm A, Bailey AM, Cairns TC, Elliott CE, Foster GD, Ianiri G, Jeon J (2017)."Agrobacterium-mediated transformation of fungi".Fungal Biology and Biotechnology.4: 6.doi:10.1186/s40694-017-0035-0.PMC 5615635.PMID 28955474.
  27. ^Zhang, Linshuang; Li, Xiangyang; Zhang, Feng; Wang, Gejiao (2 January 2014)."Genomic analysis of Agrobacterium radiobacter DSM 30147T and emended description of A. radiobacter (Beijerinck and van Delden 1902) Conn 1942 (Approved Lists 1980) emend. Sawada et al. 1993".Standards in Genomic Sciences.9 (3):574–584.doi:10.4056/sigs.4688352.PMC 4149017.
  28. ^Setubal JC, Wood D, Burr T, Farrand SK, Goldman BS, Goodner B, Otten L, Slater S (2009)."The Genomics ofAgrobacterium: Insights into its Pathogenicity, Biocontrol, and Evolution". In Jackson RW (ed.).Plant Pathogenic Bacteria: Genomics and Molecular Biology. Caister Academic Press. pp. 91–112.ISBN 978-1-904455-37-0.
  29. ^Chilton, Mary-Dell (2001)."Agrobacterium. A Memoir".Plant Physiology.125 (1):9–14.doi:10.1104/pp.125.1.9.ISSN 0032-0889.PMC 1539314.PMID 11154285.

Further reading

External links

Genetically
modified
organisms
Crops
Maize/corn
Potato
Rice
Soybean
Tomato
Cotton
Wheat
Other
Animals
Mammals
Other animals
Bacteria
andviruses
Processes
Inserting DNA
Types
Uses
In agriculture
Inhumans and
diagnostics
In research
Related
articles
Regulation
Geography
Similar fields
Agrobacterium
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://mdwiki.org/wiki/Agrobacterium"
Categories: