matplotlib.pyplot.xcorr#
- matplotlib.pyplot.xcorr(x,y,*,normed=True,detrend=<functiondetrend_none>,usevlines=True,maxlags=10,data=None,**kwargs)[source]#
Plot the cross correlation betweenx andy.
The correlation with lag k is defined as\(\sum_n x[n+k] \cdot y^*[n]\), where\(y^*\) is the complexconjugate of\(y\).
- Parameters:
- x, yarray-like of length n
Neitherx nory are run through Matplotlib's unit conversion, sothese should be unit-less arrays.
- detrendcallable, default:
mlab.detrend_none(no detrending) A detrending function applied tox andy. It must have thesignature
detrend(x:np.ndarray)->np.ndarray
- normedbool, default: True
If
True, input vectors are normalised to unit length.- usevlinesbool, default: True
Determines the plot style.
If
True, vertical lines are plotted from 0 to the xcorr valueusingAxes.vlines. Additionally, a horizontal line is plottedat y=0 usingAxes.axhline.If
False, markers are plotted at the xcorr values usingAxes.plot.- maxlagsint, default: 10
Number of lags to show. If None, will return all
2*len(x)-1lags.
- Returns:
- lagsarray (length
2*maxlags+1) The lag vector.
- carray (length
2*maxlags+1) The auto correlation vector.
- line
LineCollectionorLine2D Artistadded to the Axes of the correlation:LineCollectionifusevlines is True.Line2Difusevlines is False.
- b
Line2Dor None Horizontal line at 0 ifusevlines is TrueNoneusevlines is False.
- lagsarray (length
- Other Parameters:
- linestyle
Line2Dproperty, optional The linestyle for plotting the data points.Only used ifusevlines is
False.- markerstr, default: 'o'
The marker for plotting the data points.Only used ifusevlines is
False.- dataindexable object, optional
If given, the following parameters also accept a string
s, which isinterpreted asdata[s]ifsis a key indata:x,y
- **kwargs
Additional parameters are passed to
Axes.vlinesandAxes.axhlineifusevlines isTrue; otherwise they arepassed toAxes.plot.
- linestyle
Notes
Note
This is thepyplot wrapper for
axes.Axes.xcorr.The cross correlation is performed with
numpy.correlatewithmode="full".