matplotlib.colors.SymLogNorm#
- classmatplotlib.colors.SymLogNorm(linthresh,linscale=1.0,vmin=None,vmax=None,clip=False,*,base=10)[source]#
Bases:
SymLogNormThe symmetrical logarithmic scale is logarithmic in both thepositive and negative directions from the origin.
Since the values close to zero tend toward infinity, there is aneed to have a range around zero that is linear. The parameterlinthresh allows the user to specify the size of this range(-linthresh,linthresh).
- Parameters:
- linthreshfloat
The range within which the plot is linear (to avoid having the plotgo to infinity around zero).
- linscalefloat, default: 1
This allows the linear range (-linthresh tolinthresh) to bestretched relative to the logarithmic range. Its value is thenumber of decades to use for each half of the linear range. Forexample, whenlinscale == 1.0 (the default), the space used forthe positive and negative halves of the linear range will be equalto one decade in the logarithmic range.
- basefloat, default: 10
- Parameters:
- vmin, vmaxfloat or None
Values within the range
[vmin,vmax]from the input data will belinearly mapped to[0,1]. If eithervmin orvmax is notprovided, they default to the minimum and maximum values of the input,respectively.- clipbool, default: False
Determines the behavior for mapping values outside the range
[vmin,vmax].If clipping is off, values outside the range
[vmin,vmax]arealso transformed, resulting in values outside[0,1]. Thisbehavior is usually desirable, as colormaps can mark theseunderandover values with specific colors.If clipping is on, values belowvmin are mapped to 0 and valuesabovevmax are mapped to 1. Such values become indistinguishablefrom regular boundary values, which may cause misinterpretation ofthe data.
Notes
If
vmin==vmax, input data will be mapped to 0.- __call__(value,clip=None)[source]#
Normalize the data and return the normalized data.
- Parameters:
- value
Data to normalize.
- clipbool, optional
See the description of the parameterclip in
Normalize.If
None, defaults toself.clip(which defaults toFalse).
Notes
If not already initialized,
self.vminandself.vmaxareinitialized usingself.autoscale_None(value).