matplotlib.colors.Normalize#
- classmatplotlib.colors.Normalize(vmin=None,vmax=None,clip=False)[source]#
Bases:
NormA class which, when called, maps values within the interval
[vmin,vmax]linearly to the interval[0.0,1.0]. The mapping ofvalues outside[vmin,vmax]depends onclip.See also
Examples
x=[-2,-1,0,1,2]norm=mpl.colors.Normalize(vmin=-1,vmax=1,clip=False)norm(x)# [-0.5, 0., 0.5, 1., 1.5]norm=mpl.colors.Normalize(vmin=-1,vmax=1,clip=True)norm(x)# [0., 0., 0.5, 1., 1.]
- Parameters:
- vmin, vmaxfloat or None
Values within the range
[vmin,vmax]from the input data will belinearly mapped to[0,1]. If eithervmin orvmax is notprovided, they default to the minimum and maximum values of the input,respectively.- clipbool, default: False
Determines the behavior for mapping values outside the range
[vmin,vmax].If clipping is off, values outside the range
[vmin,vmax]arealso transformed, resulting in values outside[0,1]. Thisbehavior is usually desirable, as colormaps can mark theseunderandover values with specific colors.If clipping is on, values belowvmin are mapped to 0 and valuesabovevmax are mapped to 1. Such values become indistinguishablefrom regular boundary values, which may cause misinterpretation ofthe data.
Notes
If
vmin==vmax, input data will be mapped to 0.- __call__(value,clip=None)[source]#
Normalize the data and return the normalized data.
- Parameters:
- value
Data to normalize.
- clipbool, optional
See the description of the parameterclip in
Normalize.If
None, defaults toself.clip(which defaults toFalse).
Notes
If not already initialized,
self.vminandself.vmaxareinitialized usingself.autoscale_None(value).
- propertyclip#
Determines the behavior for mapping values outside the range
[vmin,vmax].See theclip parameter in
Normalize.
- inverse(value)[source]#
Maps the normalized value (i.e., index in the colormap) back to imagedata value.
- Parameters:
- value
Normalized value.
- propertyn_components#
The number of distinct components supported (1).
This is the number of elements of the parameter to
__call__and ofvmin,vmax.This class support only a single component, as opposed to
MultiNormwhich supports multiple components.
- staticprocess_value(value)[source]#
Homogenize the inputvalue for easy and efficient normalization.
value can be a scalar or sequence.
- Parameters:
- value
Data to normalize.
- Returns:
- resultmasked array
Masked array with the same shape asvalue.
- is_scalarbool
Whethervalue is a scalar.
Notes
Float dtypes are preserved; integer types with two bytes or smaller areconverted to np.float32, and larger types are converted to np.float64.Preserving float32 when possible, and using in-place operations,greatly improves speed for large arrays.
- propertyvmax#
Upper limit of the input data interval; maps to 1.
- propertyvmin#
Lower limit of the input data interval; maps to 0.