matplotlib.colors.AsinhNorm#

classmatplotlib.colors.AsinhNorm(linear_width=1,vmin=None,vmax=None,clip=False)[source]#

Bases:AsinhNorm

The inverse hyperbolic sine scale is approximately linear nearthe origin, but becomes logarithmic for larger positiveor negative values. Unlike theSymLogNorm, the transition betweenthese linear and logarithmic regions is smooth, which may reducethe risk of visual artifacts.

Note

This API is provisional and may be revised in the futurebased on early user feedback.

Parameters:
linear_widthfloat, default: 1

The effective width of the linear region, beyond whichthe transformation becomes asymptotically logarithmic

Parameters:
vmin, vmaxfloat or None

Values within the range[vmin,vmax] from the input data will belinearly mapped to[0,1]. If eithervmin orvmax is notprovided, they default to the minimum and maximum values of the input,respectively.

clipbool, default: False

Determines the behavior for mapping values outside the range[vmin,vmax].

If clipping is off, values outside the range[vmin,vmax] arealso transformed, resulting in values outside[0,1]. Thisbehavior is usually desirable, as colormaps can mark theseunderandover values with specific colors.

If clipping is on, values belowvmin are mapped to 0 and valuesabovevmax are mapped to 1. Such values become indistinguishablefrom regular boundary values, which may cause misinterpretation ofthe data.

Notes

Ifvmin==vmax, input data will be mapped to 0.

__call__(value,clip=None)[source]#

Normalize the data and return the normalized data.

Parameters:
value

Data to normalize.

clipbool, optional

See the description of the parameterclip inNormalize.

IfNone, defaults toself.clip (which defaults toFalse).

Notes

If not already initialized,self.vmin andself.vmax areinitialized usingself.autoscale_None(value).

autoscale_None(A)[source]#

Ifvmin orvmax are not set, use the min/max ofA to set them.

inverse(value)[source]#

Maps the normalized value (i.e., index in the colormap) back to imagedata value.

Parameters:
value

Normalized value.

Examples usingmatplotlib.colors.AsinhNorm#

Colormap normalizations SymLogNorm

Colormap normalizations SymLogNorm