Note
Go to the endto download the full example code.
Custom scale#
Custom scales can be created in two ways
For simple cases, use
FuncScale
and the'function'
option ofset_xscale
andset_yscale
. See the last example inScales overview.Create a custom scale class such as the one in this example, which implementsthe scaling use for latitude data in a Mercator Projection. This more complicatedapproach is useful when
You are making special use of the
Transform
class, such as the specialhandling of values beyond the threshold inMercatorLatitudeTransform
below.You want to override the default locators and formatters for the axis(
set_default_locators_and_formatters
below).You want to limit the range of the axis (
limit_range_for_scale
below).

importnumpyasnpfromnumpyimportmafrommatplotlibimportscaleasmscalefrommatplotlibimporttransformsasmtransformsfrommatplotlib.tickerimportFixedLocator,FuncFormatterclassMercatorLatitudeScale(mscale.ScaleBase):""" Scales data in range -pi/2 to pi/2 (-90 to 90 degrees) using the system used to scale latitudes in a Mercator__ projection. The scale function: ln(tan(y) + sec(y)) The inverse scale function: atan(sinh(y)) Since the Mercator scale tends to infinity at +/- 90 degrees, there is user-defined threshold, above and below which nothing will be plotted. This defaults to +/- 85 degrees. __ https://en.wikipedia.org/wiki/Mercator_projection """# The scale class must have a member ``name`` that defines the string used# to select the scale. For example, ``ax.set_yscale("mercator")`` would be# used to select this scale.name='mercator'def__init__(self,axis,*,thresh=np.deg2rad(85),**kwargs):""" Any keyword arguments passed to ``set_xscale`` and ``set_yscale`` will be passed along to the scale's constructor. thresh: The degree above which to crop the data. """super().__init__(axis)ifthresh>=np.pi/2:raiseValueError("thresh must be less than pi/2")self.thresh=threshdefget_transform(self):""" Override this method to return a new instance that does the actual transformation of the data. The MercatorLatitudeTransform class is defined below as a nested class of this one. """returnself.MercatorLatitudeTransform(self.thresh)defset_default_locators_and_formatters(self,axis):""" Override to set up the locators and formatters to use with the scale. This is only required if the scale requires custom locators and formatters. Writing custom locators and formatters is rather outside the scope of this example, but there are many helpful examples in :mod:`.ticker`. In our case, the Mercator example uses a fixed locator from -90 to 90 degrees and a custom formatter to convert the radians to degrees and put a degree symbol after the value. """fmt=FuncFormatter(lambdax,pos=None:f"{np.degrees(x):.0f}\N{DEGREE SIGN}")axis.set(major_locator=FixedLocator(np.radians(range(-90,90,10))),major_formatter=fmt,minor_formatter=fmt)deflimit_range_for_scale(self,vmin,vmax,minpos):""" Override to limit the bounds of the axis to the domain of the transform. In the case of Mercator, the bounds should be limited to the threshold that was passed in. Unlike the autoscaling provided by the tick locators, this range limiting will always be adhered to, whether the axis range is set manually, determined automatically or changed through panning and zooming. """returnmax(vmin,-self.thresh),min(vmax,self.thresh)classMercatorLatitudeTransform(mtransforms.Transform):# There are two value members that must be defined.# ``input_dims`` and ``output_dims`` specify number of input# dimensions and output dimensions to the transformation.# These are used by the transformation framework to do some# error checking and prevent incompatible transformations from# being connected together. When defining transforms for a# scale, which are, by definition, separable and have only one# dimension, these members should always be set to 1.input_dims=output_dims=1def__init__(self,thresh):mtransforms.Transform.__init__(self)self.thresh=threshdeftransform_non_affine(self,a):""" This transform takes a numpy array and returns a transformed copy. Since the range of the Mercator scale is limited by the user-specified threshold, the input array must be masked to contain only valid values. Matplotlib will handle masked arrays and remove the out-of-range data from the plot. However, the returned array *must* have the same shape as the input array, since these values need to remain synchronized with values in the other dimension. """masked=ma.masked_where((a<-self.thresh)|(a>self.thresh),a)ifmasked.mask.any():returnma.log(np.abs(ma.tan(masked)+1/ma.cos(masked)))else:returnnp.log(np.abs(np.tan(a)+1/np.cos(a)))definverted(self):""" Override this method so Matplotlib knows how to get the inverse transform for this transform. """returnMercatorLatitudeScale.InvertedMercatorLatitudeTransform(self.thresh)classInvertedMercatorLatitudeTransform(mtransforms.Transform):input_dims=output_dims=1def__init__(self,thresh):mtransforms.Transform.__init__(self)self.thresh=threshdeftransform_non_affine(self,a):returnnp.arctan(np.sinh(a))definverted(self):returnMercatorLatitudeScale.MercatorLatitudeTransform(self.thresh)# Now that the Scale class has been defined, it must be registered so# that Matplotlib can find it.mscale.register_scale(MercatorLatitudeScale)if__name__=='__main__':importmatplotlib.pyplotaspltt=np.arange(-180.0,180.0,0.1)s=np.radians(t)/2.plt.plot(t,s,'-',lw=2)plt.yscale('mercator')plt.xlabel('Longitude')plt.ylabel('Latitude')plt.title('Mercator projection')plt.grid(True)plt.show()