Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Wright Function


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

Theentire function

 phi(rho,beta;z)=sum_(k=0)^infty(z^k)/(k!Gamma(rhok+beta)),

whererho>-1 andbeta in C, named after the British mathematician E. M. Wright.


See also

Mittag-Leffler Function

Explore with Wolfram|Alpha

References

Gorenflo, R.; Luchko, Yu.; and Mainardi, F. "Analytical Properties and Applications of the Wright Function."Fractional Calc. Appl. Anal.2, 383-415, 1999.

Referenced on Wolfram|Alpha

Wright Function

Cite this as:

Weisstein, Eric W. "Wright Function."FromMathWorld--A Wolfram Web Resource.https://mathworld.wolfram.com/WrightFunction.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp