Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Titchmarsh Theorem


Iff(omega) issquare integrable over therealomega-axis, then any one of the following implies the other two:

1. TheFourier transformF(t)=F_omega[f(omega)](t) is 0 fort<0.

2. Replacingomega byz=x+iy, the functionf(z) is analytic in thecomplex planez fory>0 and approachesf(x) almost everywhere asy->0. Furthermore,int_(-infty)^infty|f(x+iy)|^2dx<k for some numberk andy>0 (i.e., the integral is bounded).

3. Thereal andimaginary parts ofF(z) areHilbert transforms of each other

(Bracewell 1999, Problem 8, p. 273).


See also

Fourier Transform,HilbertTransform

Explore with Wolfram|Alpha

References

Bracewell, R.The Fourier Transform and Its Applications, 3rd ed. New York: McGraw-Hill, 1999.

Referenced on Wolfram|Alpha

Titchmarsh Theorem

Cite this as:

Weisstein, Eric W. "Titchmarsh Theorem."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/TitchmarshTheorem.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2026 Movatter.jp