Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Taylor Series


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

A Taylor series is aseries expansion of afunction about a point. A one-dimensional Taylor series is an expansion of areal functionf(x) about a pointx=a is given by

 f(x)=f(a)+f^'(a)(x-a)+(f^('')(a))/(2!)(x-a)^2+(f^((3))(a))/(3!)(x-a)^3+...+(f^((n))(a))/(n!)(x-a)^n+....
(1)

Ifa=0, the expansion is known as aMaclaurin series.

Taylor's theorem (actually discovered first by Gregory) states that any function satisfying certain conditions can be expressed as a Taylor series.

The Taylor (or more general) series of a functionf(x) about a pointa up to ordern may be found usingSeries[f,{x,a,n}]. Thenth term of a Taylor series of a functionf can be computed in theWolfram Language usingSeriesCoefficient[f,{x,a,n}] and is given by the inverseZ-transform

 a_n=Z^(-1)[f(1/(z-a))](n).
(2)

Taylor series of some common functions include

1/(1-x)=1/(1-a)+(x-a)/((1-a)^2)+((x-a)^2)/((1-a)^3)+...
(3)
cosx=cosa-sina(x-a)-1/2cosa(x-a)^2+1/6sina(x-a)^3+...
(4)
e^x=e^a[1+(x-a)+1/2(x-a)^2+1/6(x-a)^3+...]
(5)
lnx=lna+(x-a)/a-((x-a)^2)/(2a^2)+((x-a)^3)/(3a^3)-...
(6)
sinx=sina+cosa(x-a)-1/2sina(x-a)^2-1/6cosa(x-a)^3+...
(7)
tanx=tana+sec^2a(x-a)+sec^2atana(x-a)^2+sec^2a(sec^2a-2/3)(x-a)^3+....
(8)

To derive the Taylor series of a functionf(x), note that the integral of the(n+1)stderivativef^((n+1)) off(x) from the pointx_0 to an arbitrary pointx is given by

 int_(x_0)^xf^((n+1))(x)dx=[f^((n))(x)]_(x_0)^x=f^((n))(x)-f^((n))(x_0),
(9)

wheref^((n))(x_0) is thenth derivative off(x) evaluated atx_0, and is therefore simply a constant. Now integrate a second time to obtain

 int_(x_0)^x[int_(x_0)^xf^((n+1))(x)dx]dx =int_(x_0)^x[f^((n))(x)-f^((n))(x_0)]dx =[f^((n-1))(x)]_(x_0)^x-(x-x_0)f^((n))(x_0) =f^((n-1))(x)-f^((n-1))(x_0)-(x-x_0)f^((n))(x_0),
(10)

wheref^((k))(x_0) is again a constant. Integrating a third time,

 int_(x_0)^xint_(x_0)^xint_(x_0)^xf^((n+1))(x)(dx)^3=f^((n-2))(x)-f^((n-2))(x_0) -(x-x_0)f^((n-1))(x_0)-((x-x_0)^2)/(2!)f^((n))(x_0),
(11)

and continuing up ton+1 integrations then gives

 int...int_(x_0)^x_()_(n+1)f^((n+1))(x)(dx)^(n+1)=f(x)-f(x_0)-(x-x_0)f^'(x_0)  -((x-x_0)^2)/(2!)f^('')(x_0)-...-((x-x_0)^n)/(n!)f^((n))(x_0).
(12)

Rearranging then gives the one-dimensional Taylor series

f(x)=f(x_0)+(x-x_0)f^'(x_0)+((x-x_0)^2)/(2!)f^('')(x_0)+...+((x-x_0)^n)/(n!)f^((n))(x_0)+R_n
(13)
=sum_(k=0)^(n)((x-x_0)^kf^((k))(x_0))/(k!)+R_n.
(14)

Here,R_n is a remainder term known as theLagrange remainder, which is given by

 R_n=int...int_(x_0)^x_()_(n+1)f^((n+1))(x)(dx)^(n+1).
(15)

Rewriting therepeated integral then gives

 R_n=int_(x_0)^xf^((n+1))(t)((x-t)^n)/(n!)dt.
(16)

Now, from themean-value theorem for a functiong(x), it must be true that

 int_(x_0)^xg(x)dx=(x-x_0)g(x^*)
(17)

for somex^* in [x_0,x]. Therefore, integratingn+1 times gives the result

 R_n=((x-x_0)^(n+1))/((n+1)!)f^((n+1))(x^*)
(18)

(Abramowitz and Stegun 1972, p. 880), so the maximum error aftern terms of the Taylor series is the maximum value of (18) running through allx^* in [x_0,x]. Note that the Lagrange remainderR_n is also sometimes taken to refer to the remainder when terms up to the(n-1)st power are taken in the Taylor series (Whittaker and Watson 1990, pp. 95-96).

Taylor series can also be defined for functions of acomplexvariable. By theCauchy integral formula,

f(z)=1/(2pii)int_C(f(z^')dz^')/(z^'-z)
(19)
=1/(2pii)int_C(f(z^')dz^')/((z^'-z_0)-(z-z_0))
(20)
=1/(2pii)int_C(f(z^')dz^')/((z^'-z_0)(1-(z-z_0)/(z^'-z_0))).
(21)

In the interior ofC,

 (|z-z_0|)/(|z^'-z_0|)<1
(22)

so, using

 1/(1-t)=sum_(n=0)^inftyt^n,
(23)

it follows that

f(z)=1/(2pii)int_Csum_(n=0)^(infty)((z-z_0)^nf(z^')dz^')/((z^'-z_0)^(n+1))
(24)
=1/(2pii)sum_(n=0)^(infty)(z-z_0)^nint_C(f(z^')dz^')/((z^'-z_0)^(n+1)).
(25)

Using theCauchy integral formula for derivatives,

 f(z)=sum_(n=0)^infty(z-z_0)^n(f^((n))(z_0))/(n!).
(26)

An alternative form of the one-dimensional Taylor series may be obtained by letting

 x-x_0=Deltax
(27)

so that

 x=x_0+Deltax.
(28)

Substitute this result into (◇) to give

 f(x_0+Deltax)=f(x_0)+Deltaxf^'(x_0)+1/(2!)(Deltax)^2f^('')(x_0)+....
(29)

A Taylor series of areal function in two variablesf(x,y) is given by

 f(x+Deltax,y+Deltay)=f(x,y)+[f_x(x,y)Deltax+f_y(x,y)Deltay]+1/(2!)[(Deltax)^2f_(xx)(x,y)+2DeltaxDeltayf_(xy)(x,y)+(Deltay)^2f_(yy)(x,y)]+1/(3!)[(Deltax)^3f_(xxx)(x,y)+3(Deltax)^2Deltayf_(xxy)(x,y)+3Deltax(Deltay)^2f_(xyy)(x,y)+(Deltay)^3f_(yyy)(x,y)]+....
(30)

This can be further generalized for areal function inn variables,

 f(x_1,...,x_n)=sum_(j=0)^infty{1/(j!)[sum_(k=1)^n(x_k-a_k)partial/(partialx_k^')]^jf(x_1^',...,x_n^')}_(x_1^'=a_1,...,x_n^'=a_n).
(31)

Rewriting,

 f(x_1+a_1,...,x_n+a_n)=sum_(j=0)^infty{1/(j!)(sum_(k=1)^na_kpartial/(partialx_k^'))^jf(x_1^',...,x_n^')}_(x_1^'=x_1,...,x_n^'=x_n).
(32)

For example, takingn=2 in (31) gives

f(x_1,x_2)=sum_(j=0)^(infty){1/(j!)[(x_1-a_1)partial/(partialx_1^')+(x_2-a_2)partial/(partialx_2^')]^jf(x_1^',x_2^')}_(x_1^'=a_1,x_2^'=a_2)
(33)
=f(a_1,a_2)+[(x_1-a_1)(partialf)/(partialx_1)+(x_2-a_2)(partialf)/(partialx_2)]+1/(2!)[(x_1-a_1)^2(partial^2f)/(partialx_1^2)+2(x_1-a_1)(x_2-a_2)(partial^2f)/(partialx_1partialx_2)+(x_2-a_2)^2(partial^2f)/(partialx_2^2)]+....
(34)

Takingn=3 in (32) gives

 f(x_1+a_1,x_2+a_2,x_3+a_3) =sum_(j=0)^infty{1/(j!)(a_1partial/(partialx_1^')+a_2partial/(partialx_2^')+a_3partial/(partialx_3^'))^jf(x_1^',x_2^',x_3^')}_(x_1^'=x_1,x_2^'=x_2,x_3^'=x_3),
(35)

or, invector form

 f(r+a)=sum_(j=0)^infty[1/(j!)(a·del _(r^'))^jf(r^')]_(r^'=r).
(36)

The zeroth- and first-order terms aref(r) and(a·del _(r^'))f(r^')|_(r^'=r), respectively. The second-order term is

1/2(a·del _(r^'))(a·del _(r^'))f(r^')|_(r^'=r)=1/2a·del _(r^')[a·(del f(r^'))]_(r^'=r)
(37)
=1/2a·[a·del _(r^')(del _(r^')f(r^'))]|_(r^'=r),
(38)

so the first few terms of the expansion are

 f(r+a)=f(r)+(a·del _(r^'))f(r^')|_(r^'=r)+1/2a·[a·del _(r^')(del _(r^')f(r^'))]|_(r^'=r).
(39)

See also

Cauchy Remainder,Fourier Series,Generalized Fourier Series,Lagrange Inversion Theorem,Lagrange Remainder,Laurent Series,Maclaurin Series,Newton's Forward Difference Formula,Taylor's Inequality,Taylor's TheoremExplore this topic in the MathWorld classroom

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.).Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 880, 1972.Arfken, G. "Taylor's Expansion." §5.6 inMathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 303-313, 1985.Askey, R. and Haimo, D. T. "Similarities between Fourier and Power Series."Amer. Math. Monthly103, 297-304, 1996.Comtet, L. "Calcul pratique des coefficients de Taylor d'une fonction algébrique."Enseign. Math.10, 267-270, 1964.Morse, P. M. and Feshbach, H. "Derivatives of Analytic Functions, Taylor and Laurent Series." §4.3 inMethods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 374-398, 1953.Whittaker, E. T. and Watson, G. N. "Forms of the Remainder in Taylor's Series." §5.41 inA Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, pp. 95-96, 1990.

Referenced on Wolfram|Alpha

Taylor Series

Cite this as:

Weisstein, Eric W. "Taylor Series." FromMathWorld--A Wolfram Web Resource.https://mathworld.wolfram.com/TaylorSeries.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp