Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Root-Mean-Square


For a set ofn numbers or values of a discrete distributionx_i, ...,x_n, the root-mean-square (abbreviated "RMS" and sometimes called the quadratic mean), is thesquare root of mean of the valuesx_i^2, namely

x_(RMS)=sqrt((x_1^2+x_2^2+...+x_n^2)/n)
(1)
=sqrt((sum_(i=1)^(n)x_i^2)/n)
(2)
=sqrt(<x^2>),
(3)

where<x^2> denotes the mean of the valuesx_i^2.

For avariateX from a continuous distributionP(x),

 x_(RMS)=sqrt((int[P(x)]^2dx)/(intP(x)dx)),
(4)

where the integrals are taken over the domain of the distribution. Similarly, for a functionf(t) periodic over the interval[T_1,T_2], the root-mean-square is defined as

 f_(RMS)=sqrt(1/(T_2-T_1)int_(T_1)^(T_2)[f(t)]^2dt).
(5)

The root-mean-square is the special caseM_2 of thepower mean.

Hoehn and Niven (1985) show that

 R(a_1+c,a_2+c,...,a_n+c)<c+R(a_1,a_2,...,a_n)
(6)

for anypositive constantc.

Physical scientists often use the term root-mean-square as a synonym forstandard deviation when they refer to thesquare root of the mean squared deviation of a signal from a given baseline or fit.


See also

Arithmetic-Geometric Mean,Arithmetic-Harmonic Mean,Geometric Mean,Harmonic Mean,Harmonic-Geometric Mean,Mean,Mean Square Displacement,Power Mean,Pythagorean Means,Standard Deviation,Statistical Median,Variance

Explore with Wolfram|Alpha

References

Hoehn, L. and Niven, I. "Averages on the Move."Math. Mag.58, 151-156, 1985.Kenney, J. F. and Keeping, E. S. "Root Mean Square." §4.15 inMathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, pp. 59-60, 1962.

Referenced on Wolfram|Alpha

Root-Mean-Square

Cite this as:

Weisstein, Eric W. "Root-Mean-Square."FromMathWorld--A Wolfram Web Resource.https://mathworld.wolfram.com/Root-Mean-Square.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp