Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Reflection


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

The operation of exchanging all points of a mathematical object with theirmirror images (i.e., reflections in a mirror). Objects that do not changehandedness under reflection are said to beamphichiral; those that do are said to bechiral.

Reflection1

Consider the geometry of the left figure in which a pointx_1 is reflectedin a mirror (blue line). Then

 x_r=x_0+n^^[(x_1-x_0)·n^^],
(1)

so the reflection ofx_1 is given by

 x_1^'=-x_1+2x_0+2n^^[(x_1-x_0)·n^^].
(2)
Reflection2

The term reflection can also refer to the reflection of a ball, ray of light, etc.off a flat surface. As shown in the right diagram above, the reflection of a pointsx_1 off a wall withnormal vectorn satisfies

 x_1^'-x_0=v-2(v·n^^)n^^.
(3)

If theplane of reflection is taken as theyz-plane, the reflection in two- or three-dimensionalspace consists of making the transformationx->-x for each point. Consider an arbitrary pointx_0 and aplane specified by the equation

 ax+by+cz+d=0.
(4)

Thisplane hasnormal vector

 n=[a; b; c],
(5)

and the signedpoint-plane distance is

 D=(ax_0+by_0+cz_0+d)/(sqrt(a^2+b^2+c^2)).
(6)

The position of the point reflected in the given plane is therefore given by

x_0^'=x_0-2Dn^^
(7)
=[x_0; y_0; z_0]-(2(ax_0+by_0+cz_0+d))/(a^2+b^2+c^2)[a; b; c].
(8)

The reflection of a point with trilinear coordinatesalpha_0:beta_0:gamma_0 in a pointalpha_1:beta_1:gamma_1 is given byalpha:beta:gamma, where

alpha=2alpha_1(bbeta_0+cgamma_0)+alpha_0(aalpha_1-bbeta_1-cgamma_1)
(9)
beta=2beta_1(aalpha_0+cgamma_0)+beta_0(-aalpha_1+bbeta_1-cgamma_1)
(10)
gamma=2gamma_1(aalpha_0+bbeta_0)+gamma_0(-aalpha_1-bbeta_1+cgamma_1).
(11)

See also

Affine Transformation,Amphichiral,Chiral,Dilation,Enantiomer,Expansion,Glide,Handedness,Improper Rotation,Inversion Operation,Mirror Image,Projection,Reflection Triangle,Reflection Property,Reflection Relation,Reflexible,Rotation,TranslationExplore this topic in the MathWorld classroom

Explore with Wolfram|Alpha

References

Addington, S. "The Four Types of Symmetry in the Plane."http://mathforum.org/sum95/suzanne/symsusan.html.Coxeter, H. S. M. and Greitzer, S. L. "Reflection." §4.4 inGeometry Revisited. Washington, DC: Math. Assoc. Amer., pp. 86-87, 1967.Voisin, C.Mirror Symmetry. Providence, RI: Amer. Math. Soc., 1999.Yaglom, I. M.Geometric Transformations I. New York: Random House, 1962.

Referenced on Wolfram|Alpha

Reflection

Cite this as:

Weisstein, Eric W. "Reflection." FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/Reflection.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp