Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Ramanujan Prime


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

Thenth Ramanujan prime is the smallest numberR_n such thatpi(x)-pi(x/2)>=n for allx>=R_n, wherepi(x) is theprime counting function. In other words, there are at leastnprimes betweenx/2 andx wheneverx>=R_n. The smallest such numberR_n must beprime, since the functionpi(x)-pi(x/2) can increase only at a prime.

Equivalently,

 R_n=1+max_(k){k:pi(k)-pi(1/2k)=n-1}.

Using simple properties of the gamma function, Ramanujan (1919) gave a new proof ofBertrand's postulate. Then he proved the generalization thatpi(x)-pi(x/2)>=1, 2, 3, 4, 5, ... ifx>=2, 11, 17, 29, 41, ... (OEISA104272), respectively. These are the first few Ramanujan primes.

The casepi(x)-pi(x/2)>=1 for allx>=2 isBertrand's postulate.


See also

Bertrand's Postulate,Prime Counting Function

This entry contributed byJonathan Sondow (author's link)

Explore with Wolfram|Alpha

References

Ramanujan, S.Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, P. V. S. Aiyar, and B. M. Wilson). Providence, RI: Amer. Math. Soc., pp. 208-209, 2000.Ramanujan, S. "A Proof of Bertrand's Postulate."J. Indian Math. Soc.11, 181-182, 1919.Sloane, N. J. A. SequenceA104272 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Ramanujan Prime

Cite this as:

Sondow, Jonathan. "Ramanujan Prime." FromMathWorld--A Wolfram Resource, created byEric W. Weisstein.https://mathworld.wolfram.com/RamanujanPrime.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2026 Movatter.jp