Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Omega Constant


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

The omega constant is defined as

 W(1)=0.5671432904...
(1)

(OEISA030178), whereW(x) is theLambert W-function. It is available in theWolfram Language using the functionProductLog[1].W(1) can be considered a sort of "golden ratio" for exponentials since

 exp[-W(1)]=W(1),
(2)

giving

 ln[1/(W(1))]=W(1).
(3)

The omega constant is also given by thepower tower

 W(1)=u^(u^(·^(·^·))),
(4)

whereu=1/e.

A beautiful integral involvingW(1) given by

int_(-infty)^infty(dx)/((e^x-x)^2+pi^2)=1/(1+W(1))
(5)
=0.638103743...
(6)

is due to V. Adamchik (OEISA115287; Moll2006; typo corrected).


See also

Golden Ratio,Lambert W-Function,omega2 Constant,Power Tower

Explore with Wolfram|Alpha

References

Michon, G. P. "Final Answers: Numerical Constants."http://home.att.net/~numericana/answer/constants.htm#mertens.Moll, V. H. "Some Questions in the Evaluation of Definite Integrals." MAA Short Course, San Antonio, TX. Jan. 2006.http://crd.lbl.gov/~dhbailey/expmath/maa-course/Moll-MAA.pdf.Sloane, N. J. A. SequencesA030178 andA115287 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Omega Constant

Cite this as:

Weisstein, Eric W. "Omega Constant." FromMathWorld--A Wolfram Web Resource.https://mathworld.wolfram.com/OmegaConstant.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp