Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Nonagonal Triangular Number


A number which is simultaneously anonagonal numberN_m and atriangular numberT_n and therefore satisfies theDiophantine equation.

 1/2m(7m-5)=1/2n(1+n).
(1)

Completing the square and rearranging gives

 (14m-5)^2-7(2n+1)^2=18.
(2)

Definingx=14m-5 andy=2n+1 gives the Pell-like equation

 x^2-7y^2=18.
(3)

This has unit solutions(x,y)=(5,1), (9, 3), and (19, 7), which lead to the family of solutions (5, 1), (9, 3), (19, 7), (61, 23), (135, 51), (299, 113), (971, 367), .... The corresponding integer solutions inn andm are(m,n)=(1,1), (10, 25), (154, 406), (2449, 6478), ... (OEISA048907 andA048908), giving the nonagonal triangular numbers 1, 325, 82621, 20985481, 5330229625, 1353857339341, ... (OEISA048909).


See also

Nonagonal Number,TriangularNumber

Explore with Wolfram|Alpha

References

Sloane, N. J. A. SequencesA048907,A048908, andA048909 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Nonagonal Triangular Number

Cite this as:

Weisstein, Eric W. "Nonagonal Triangular Number."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/NonagonalTriangularNumber.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp