Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Minkowski's Question Mark Function


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook
MinkowskiQuestionMark

Minkowski's question mark function is the functiony=?(x) defined by Minkowski for the purpose of mapping thequadratic surds in theopen interval(0,1) into the rational numbers of(0,1) in a continuous, order-preserving manner.?(x) takes a number havingcontinued fractionx=[0;a_1,a_2,a_3,...] to the number

 ?(x)=sum_(k)((-1)^(k-1))/(2^((a_1+...+a_k)-1)).
(1)

It is implemented in theWolfram LanguageasMinkowskiQuestionMark[x].

The function satisfies the following properties (Salem 1943).

1.?(x) is strictly increasing.

2. Ifx is rational, then?(x) is of the formk/2^s, withk ands integers.

3. Ifx is aquadratic surd, then the continued fraction is periodic, and hence?(x) is rational.

4. The function is purely singular (Denjoy 1938).

?(x) can also be constructed as

 ?((p+p^')/(q+q^'))=(?(p/q)+?(p^'/q^'))/2,
(2)

wherep/q andp^'/q^' are two consecutive irreducible fractions from theFarey sequence. At thenth stage of this definition,?(x) is defined for2^n+1 values ofx, and the ordinates corresponding to these values arex=k/2^n fork=0, 1, ...,2^n (Salem 1943).

The function satisfies the identity

 ?(1/(k^n))=1/(2^(k^n-1)).
(3)

A few special values include

?(0)=0
(4)
?(1/3)=1/4
(5)
?(1/2)=1/2
(6)
?(phi-1)=2/3
(7)
?(2/3)=3/4
(8)
?(1/2sqrt(2))=4/5
(9)
?(1/2sqrt(3))=(84)/(85)
(10)
?(1)=1,
(11)

wherephi is thegolden ratio.

There are fourfixed points (mod 1) of?(x), namelyx=0, 1/2,f and1-f, wheref<1/2 is theMinkowski-Bower constant (Finch 2003, pp. 441-443)f=0.42037... (OEISA048819).

Valuesx with large terms in their continued fractions cause?(x) to have a large section of repeating 0's or 9's (E. Pegg, Jr., pers. comm., Jan. 5, 2023). Some examples include

?(6^(1/3))=1.9530189847656249...9_()_(142)6...
(12)
?(20^(1/3))=2.81250...0_()_(43)2...
(13)
?(pi)=3.1562476158142089843749...9_()_(72)8....
(14)

See also

Devil's Staircase,FareySequence,Minkowski-Bower Constant

Explore with Wolfram|Alpha

References

Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H.Experimental Mathematics in Action. Wellesley, MA: A K Peters, pp. 237-238, 2007.Conway, J. H. "Contorted Fractions."On Numbers and Games, 2nd ed. Wellesley, MA: A K Peters, pp. 82-86 (1st ed.), 2000.Denjoy, A. "Sur une fonction réelle de Minkowski."J. Math. Pures Appl.17, 105-155, 1938.Finch, S. R. "Minkowski-Bower Constant." §6.9 inMathematical Constants. Cambridge, England: Cambridge University Press, pp. 441-443, 2003.Girgensohn, R. "Constructing Singular Functions via Farey Fractions."J. Math. Anal. Appl.203, 127-141, 1996.Kinney, J. R. "Note on a Singular Function of Minkowski."Proc. Amer. Math. Soc.11, 788-794, 1960.Minkowski, H. "Zur Geometrie der Zahlen." InGesammelte Abhandlungen, Vol. 2. New York: Chelsea, pp. 44-52, 1991.Salem, R. "On Some Singular Monotone Functions which Are Strictly Increasing."Trans. Amer. Math. Soc.53, 427-439, 1943.Sloane, N. J. A. SequenceA048819 in "The On-Line Encyclopedia of Integer Sequences."Tichy, R. and Uitz, J. "An Extension of Minkowski's Singular Functions."Appl. Math. Lett.8, 39-46, 1995.Viader, P.; Paradis, J.; and Bibiloni, L. "A New Light on Minkowski's?(x) Function."J. Number Th.73, 212-227, 1998.Yakubovich, S. "The Affirmative Solution to Salem's Problem Revisited." 31 Dec 2014.http://arxiv.org/abs/1501.00141.

Referenced on Wolfram|Alpha

Minkowski's Question Mark Function

Cite this as:

Weisstein, Eric W. "Minkowski's Question MarkFunction." FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/MinkowskisQuestionMarkFunction.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp