Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Log Gamma Function


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook
LogGamma
LogGammaReIm
LogGammaContours

The plots above show the values of the function obtained by taking thenatural logarithm of thegamma function,lnGamma(z). Note that this introduces complicatedbranch cut structure inherited from the logarithm function.

LogOfGammaReIm
LogOfGammaContours

For this reason, the logarithm of the gamma function is sometimes treated as a special function in its own right, and defined differently fromlnGamma(z). This special "log gamma" function is implemented in theWolfram Language asLogGamma[z], plotted above. As can be seen, the two definitions have identical real parts, but differ markedly in their imaginary components. Most importantly, although the log gamma function andlnGamma(z) are equivalent as analyticmultivalued functions, they have different branch cut structures and a different principal branch, and the log gamma function is analytic throughout the complexz-plane except for a singlebranch cut discontinuity along the negativereal axis. In particular, the log gamma function allows concise formulation of many identities related to theRiemann zeta functionzeta(z).

The log gamma function can be defined as

 lnGamma(z)=-gammaz-lnz+sum_(k=1)^infty[z/k-ln(1+z/k)].
(1)

(Boros and Moll 2004, p. 204). Another sum is given by

 lnGamma(z)=(z-1/2)lnz-z+1/2ln(2pi)+1/2sum_(n=2)^infty((n-1))/(n(n+1))zeta(n,z+1)
(2)

(Whittaker and Watson 1990, p. 261), wherezeta(s,a) is aHurwitz zeta function.

The second ofBinet's log gamma formulasis

 lnGamma(a)=(a-1/2)lna-a+1/2ln(2pi)+2int_0^infty(tan^(-1)(z/a))/(e^(2piz)-1)dz
(3)

forR[a]>0 (Whittaker and Watson 1990, p. 251). Another formula forlnGamma(z) is given byMalmstén's formula.

Integrals oflnGamma(x) include

int_0^1lnGamma(x)dx=1/2ln(2pi)
(4)
=-zeta^'(0)
(5)
=0.91893...
(6)

(OEISA075700; Baileyet al.2007, p. 179),which was known to Euler, and

 int_0^1[lnGamma(x)]^2dx=1/(12)gamma^2+1/(48)pi^2+1/6gammaln(2pi)+1/3[ln(2pi)]^2  -[gamma+ln(2pi)](zeta^'(2))/(pi^2)+(zeta^('')(2))/(2pi^2),
(7)

(OEISA102887; Espinosa and Moll 2002, 2004; Boros and Moll 2004, p. 203; Baileyet al.2007, p. 179), wheregamma is theEuler-Mascheroni constant andzeta^'(z) is the derivative of theRiemann zeta function.

int_0^1[lnGamma(x)]^3dx is considered by Espinosa and Moll (2006) who, however, were not able to establish a closed form (Baileyet al.2006, p. 181).

Another integral is given by

 int_0^(1/2)ln[Gamma(x+1)]dx=-1/2-7/(24)ln2+1/4lnpi+3/2lnA,
(8)

whereA is theGlaisher-Kinkelin constant (Glaisher 1878).


See also

Barnes G-Function,Binet's Log Gamma Formulas,Digamma Function,Gamma Function,Log Sine Function,Logarithm,Malmstén's Formula,Stirling's Approximation,Stirling's Series

Related Wolfram sites

http://functions.wolfram.com/GammaBetaErf/LogGamma/

Explore with Wolfram|Alpha

References

Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H.Experimental Mathematics in Action. Wellesley, MA: A K Peters, 2007.Boros, G. and Moll, V. "The Expansion of the Loggamma Function." §10.6 inIrresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals. Cambridge, England: Cambridge University Press, pp. 201-203, 2004.Espinosa, O. and Moll, V. "On Some Definite Integrals Involving the Hurwitz Zeta Function. Part I."Ramanujan J.6, 159-188, 2002.Espinosa, O. and Moll, V. "A Generalized Polygamma Function."Integral Transforms Spec. Funct.15, 101-115, 2004.Espinosa, O. and Moll, V. "The Evaluation of Tornheim Double Sums. I."J. Number Th.116, 200-229, 2006.Glaisher, J. W. L. "On the Product1^1.2^2.3^3...n^n."Messenger Math.7, 43-47, 1878.Sloane, N. J. A. SequencesA075700 andA102887 in "The On-Line Encyclopedia of Integer Sequences."Whittaker, E. T. and Watson, G. N.A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990.

Referenced on Wolfram|Alpha

Log Gamma Function

Cite this as:

Weisstein, Eric W. "Log Gamma Function."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/LogGammaFunction.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2026 Movatter.jp